= Index = [[TitleIndex(CALプログラミング)]] = N体計算 = ここまでの説明を理解することで、最もシンプルなN体計算プログラムを作成できると思う。 具体的にはGRAPEなどと同じように、ホストから粒子の位置と質量をGPUに送り、GPU上で全粒子間で互いに及ぼし合う力を足しあわせて、結果として加速度を得るようなプログラムである。粒子間に働く力がニュートン重力の場合は、[http://galaxy.u-aizu.ac.jp/trac/note/attachment/wiki/CALによるGPUプログラミング/CAL200808.pdf CAL200808.pdf] (60ページ以降)で説明しているIL kernelプログラムとなる。ループの部分のみを再掲すると、以下のようなものである。 {{{ 1 whileloop 2 ige r88.x___, r100.x, r77.x 3 break_logicalnz r88.x 4 sample_resource(0)_sampler(0) r0, r2 5 sub r5.xyz, r0.xyz, r4.xyz 6 dp4 r6, r5, r5 7 rsq r7, r6 9 mul r8, r7, r7.xyz1 10 mul r8, r8, r7.xyz1 11 mul r9, r8, r5.xyz1 12 mad r3, r9, r0.w, r3 13 add r2.x___, r2.x, l1.x 14 iadd r100.x___, r100.x, l0.z 15 umod r101.x, r100.x, r77.y 16 if_logicalz r101.x 17 add r2.0y, r2.0y, l1.x 18 endif 19 endloop }}} 2粒子間の重力の計算をおこなっている部分は5-12行である。データ構造の定義の詳細についてはファイルを参照のこと。 このILプログラムは、基本構造は(3)と同じであるが、ポインタ変数(ここでは!r2.xy)の処理が異なる。なぜかというと、粒子の座標が格納されているid = 0のリソースは2次元のメモリとして指定、確保されているからである。具体的には、ホスト側のプログラムで以下のようにメモリの確保をおこなった: {{{ calResAllocLocal2D(&inputRes, device, nx, ny, CAL_FORMAT_FLOAT_4, 0); }}} nxとnyはそれぞれ、配列の添字の最大値を指定している。nxが最低次元である。よって、このAPIによりinputResで指定されるメモリ領域は"inputRes[ny][nx]"の大きさをもつ2次元配列データとなる。フォーマットとして、CAL_FORMAT_FLOAT_4を指定しているため、このデータは単精度浮動小数点であり、4つの要素を持つ。具体的には"float inputRes[ny][nx][4]"のような3次元の配列と同等である。ただし、実際のメモリ配列については連続しているとは限らない、下記参照。 こうする理由は、"calResAllocLocal1D"により1次元のメモリとして確保した場合、その次元の最大値は8192までという制限があるためである。よって、上のILプログラムの場合には、1粒子のデータとして4要素のfloat変数を使っているので、1次元メモリで単純にN体計算を実装すると8192粒子までの粒子しか扱うことができない。これでは実用的な価値がなく、実際にベンチマークテストをしてみると、この粒子数ではRV770の性能を引き出すことができない。 = 2次元配列 = 2次元のメモリからデータを読み出すには、(3)では無視してきた読み込みポインタのy成分を適切にアップデートすればよい。上のILプログラムでは、13-18行の部分でその処理をおこなっている。 繰り返しになるが、読み込みポインタとデータの対応関係は: {{{ v0.xy = {0.0, 0.0} ---> res0[0][0] v0.xy = {1.0, 0.0} ---> res0[0][1] v0.xy = {2.0, 0.0} ---> res0[0][2] ... v0.xy = {0.0, 1.0} ---> res0[1][0] v0.xy = {1.0, 1.0} ---> res0[1][1] v0.xy = {2.0, 1.0} ---> res0[2][1] ... }}} のようになっている。 それを踏まえて13-18行をC言語に翻訳してみると、処理内容が理解できると思う: {{{ r2.x = r2.x + l1.x; r100.x = r100.x + l0.z; if (r100.x % r77.y == 0) { r2.x = 0.0; r2.y = r2.y + l1.x; } }}} 変数の意味と定数の値はそれぞれ以下のとおり: ||!r2.xy || 配列読み込みのポインタ || ||!l1.x || 浮動小数点定数 1.0 || ||!r100.x || ループカウンター 整数|| ||!l0.z || 整数定数 1 || ||!r77.y || 整数定数 配列の最下位次元の大きさ 256 || !r77.yの意味について補足すると、256になるのは、id = 0のメモリが"res0![256]![256]"として宣言されているからである。 よってILプログラムのこの部分は、2次元配列のポインタ演算をおこなっているのと同等である。細かく説明すると、!r2.x(1次元目の添え字に対応)が0から1ずつ増えていき、256に等しくなったたら、それを0にクリアし、!r2.y(2次元目の添え字に対応)をインクリメントしている。 この13-18行を基にすることで、任意のサイズの2次元配列のランダムアクセスが可能であることがわかると思う。このILプログラムの場合、アクセスパターンが一定でありバースト的なため、GPUの内部構造に(特にキャッシュ機構)に適しており、非常に高速に動作する。一方、もしランダムアクセスを実装すると、メモリ読み込みのレイテンシーがパフォーマンスの問題となる可能性がある。 "calResAllocLocal2D"または"calResAllocRemote2D"で確保した場合でも、それぞれの次元でのサイズの最大値は8192と思われる。よって、ひとつのメモリ領域に割り当て可能な最大メモリ量は、256M個のfloat変数(またはLocalの場合、ボードの搭載メモリ量の制限値まで)になる。(この項詳しく調べる必要あり)