
HPC Software Engineering

Erik Lindahl

XSEDE/PRACE/RIKEN/Compute Canada HPC Summer School Budapest 2014

“Do as I say, not as I did”

Molecular Dynamics

Understand biologyProtein Folding

Free Energy &
Drug Design

Open Source & Free Software 
Development Models

Tools & Recommendations for HPC
software engineering

How do you handle large projects with
many developers?

How do you write high(er)
quality software?

GROMACS
• Simulation hardware project  

in Groningen, 1995, with software spin-off

• Early development based on our own needs

• Turned GPL in 2001

• Organic growth of development

• Roughly 10-15 core developers

• Another 15-20 active contributors

• Currently 2,063,361 lines of C/C++/Asm code

• Lots of old code. Lots of new code. Lots of
complicated code written by scientists.

What does OSS do for us?
• We can reuse code from other OSS projects

• Peer review. Bugs will be found and hung out.
Embarrassing short-term, strength long-term.

• Easy to handle IP even with 10-15 European, US,
Asian, Australian universities involved.

• We get code contributions, and lots of them.

• Fully open development: git.gromacs.org

• Bad: Easy for any ignorant student to download
the code and publish crap results

http://git.gromacs.org

The Community

Answer provided - in 105 seconds!

Tutorials: www.gromacs.org

Adding a Residue to a Force Field	

Analysing Trajectory Information	

Beginners	

Carbon Nanotube	

Changing a 3 Point Water Model to a 4 Point Water Model	

Checkpointing Jobs	

Constant pH Simulation	

Diffusion Constant	

Dihedral PCA	

Dihedral Restraints	

Distance Restraints	

Doing Restarts	

Electrostatics	

Essential Dynamics	

Extending Simulations	

Free Energy Calculations	

Plotting Data	

Build a Linux Cluster	

Making Commands Non-Interactive	

Making Disulfide Bonds	

Membrane Simulations	

Micelle Clustering	

Mixed Solvents Multiple Chains	

Multiple Topology Entries	

Non-Water Solvation	

Normal Mode Analysis	

Parameterization of novel molecules	

pKa calculations	

Polymers	

Position Restraints	

Potential of Mean Force	

QMMM	

Reading XTC From Fortran	

Reducing Trajectory Storage Volume	

REMD	

Removing fastest degrees of freedom	

Speeding Up Simulations	

Steps to Perform a Simulation	

Tabulated Potentials	

Water Solvation	

Trajectory Visualization	

Van Der Waals

Tutorials and How-Tos provided by users:
400-page manual & online documentation

Contributions - Academia

• QM/MM interface (Groenhof, Göttingen)

• Advanced integrators (Shirts, Virginia)

• Coarse-graining (Junghans, Mainz)

• Coarse-graining (Marrink, Groningen)

• Steered simulation (Grubmüller, Göttingen)

• Free energy code (Shirts, Mobley, etc.)

Just to mention a few...

• Hewlett-Packard: IA64 asm acceleration

• IBM: BlueGene asm acceleration

• Cray: Vectorization, 3D-torus optimization

• Intel: New kernels that work better with AVX

• Intel: Larrabee->MIC->Xeon Phi work

• DE Shaw: Improved constraints, assistance
with new domain decomposition algorithms

Contributions - Industry

Funding Development
• Sneak it into other projects

• Add a bit of method development in all
application-focused projects

• Funding as research infrastructure

• National, EU, International

• Fund collaborative parts of the project

• Easier to fund algorithm work, hard to
fund better implementations/interfaces

• Virtually impossible to fund support/GUI

License Considerations

GPLv2
GPLv3

LGPLv2.1
BSD

Exceptions/encryption?
Dual license?

Business-friendly?
EU-friendly?

Academia-friendly?

Licenses are tools - decide
what you want to achieve,

and pick one that helps you!

Development Challenges

• Constant balance between things we are funded
for, things fun to write, and useful things

• Students & postdocs need to publish papers

• Regression tests - make sure you can trust us

• Large QA efforts required

• Discussion & conflicts are open on mailing lists

• Release schedules with 10+ groups involved

"Go Rough, Oppose Many Angry
Chinese Serial killers"

“Giving Russians Opium Might
Alter Current Situation”

Political Indicents
...from an OSS Perspective

HPC Software Engineering

Overwriting new code with old by mistake
Constantly forgetting to check for compiler bugs
Software releases delayed for months
Unix contributions breaking windows builds
Lacking documentation
Forgetting to fix bugs
Results changing btw releases

The mistakes we’ve made:

Fights on the mailing list
Religious code convictions

POPE FRANCIS I

The Picture until early 2011

Source code repository:
CVS
Build Chain:
Automake/Autoconf/libtool
Bug Tracking:
Bugzilla

Testing:

Track Your Source Code Edits

The CVS/SVN limitation

SVN

Problem: Berk has worked
12 months on a GPU branch, but

100 other commits has happened
in the mean time. How to commit?

-> Lots of tedious manual work!

Better source control: GIT

GIT
GIT

(Free energy repo)

GIT (AVX2 repo) GIT

GIT

GIT (GPU repo)
GIT (Verlet kernel repo)

GIT

Local branches
Several repositories, but public & private
Easy to have separate branches that exchange patches
No real “master” repository
Enable both push and pull patches
http://git-scm.com

Start your free repo on	

github.com if you don’t	

want to administrate 	

your own Git server!

http://git-scm.com

What git will give you
• Handle multiple developers

• Handle multiple feature branches in parallel with a
stable production-quality one

• Develop based on features, not source files

• Pull/push patches between branches

• Revert a specific stupid thing I did 6 months ago,
without changing subsequent patches

• Bisect changes to find which of (say) 1,500 patches
caused a bug
Drawback: Git is a VERY powerful tool, but the  
advanced features can be difficult to understand

How do you build your code?
Does your code compile on

windows (MSVC)?
K computer (Fujitsu compilers)?

ARM? ARM64?
PowerPC (big endian)?

OpenPower (little endian?)

What is a build chain?

• Issue compiler commands manually

• Start using Makefiles, edit Makefiles, give up

• Automate the generation of makefiles

The typical user progression:

Configuration
• “Where is the X11 library? MKL? LibXML?”
• “What version is the FFTW library?”
• “Is the Intel Math Kernel Library installed?”
• “Do we use that buggy gcc version?”
• “Does this compiler understand AVX2 assembly?”
• “Which flags should be used for this compiler?”
• “Is this a big or small endian system?”
• “Is a long integer 4 or 8 bytes on this host?”
• “How do we build a shared library here?”
• What C compiler is used with CUDA?

CMake: Cross-platform replacement for
Autoconf, Automake, Libtool
(instead of ./configure; make; make install)

~100 CMake tests for
features/bugs/libraries/compilers

Optional components (FFT libs) and
extensive regressiontests can be
downloaded automatically

Generators: Makefiles, Eclipse,
Xcode, VisualStudio, nmake,
CodeBlocks, KDevelop3, etc.

Out-of-source builds
Don’t put the build objects inside the source code directory!
/home/lindahl/code/Gromacs-5.0

source code

Mac mixed precision build

Mac mixed precision installation

Linux AVX2 double build

Linux AVX2 double install

Linux SSE4.1 mixed build

Linux SSE4.1 mixed install

Make a small change, run “make” in three build directories, done.

Living with your code for years: 
Documentation

“Documentation is like sex. When it’s good, it’s
great. When it’s bad, it’s better than nothing”  

[Linus Torvalds]

If documentation is not in the source, it won’t be updated

Doxygen example - our SIMD module:
[gromacs/src/gromacs/simd/]

< Demo of doxygen documentation >

The best comments don’t explain what your code
does, they explain WHY you do it this way!

Finding & 
Preventing Bugs

Modularization

• Avoid code inter-dependencies

• Have modules doing clearly separate tasks

• Make sure all code is thread-safe!

• Have a clear (documented) API for each module

• Write unit tests, not only regression tests

• Write unit test first, then the code implementation

Modularization:
Say ‘no’ to circular dependencies
Classes

Headers

This is hard, but Doxygen
helps you detect it!

Google Test

Aggressive unit testing: 
“Trust, but verify”

Example Gromacs unit tests:
The idea is that you should test everything

Do you think it’s overkill to test that hardware rounding works? In March, this
very test caught that IBM BlueGene uses different rounding modes for SIMD
and normal floating-point to integer conversions…

Commits - how code
makes it into Gromacs

Who is allowed to write to your code repository?

Gerrit Code Review

Nobody can commit directly to central Git repo anymore!
... which means we can allow almost anybody to commit

Roland has approved
Mark’s patch. Anybody can
add comments. When two
trusted developers say OK,
the patch is committed.

Multiple patches in-flight
Gerrit/git do dependency
tracking, patches can be
rebased onto others by
hitting a rebase button

Extensive comments on
code during review

Maintaining quality &
avoiding breaking stuff

How do I make sure that *I* don’t make mistakes?

Jenkins Continuous Integration

Every single
commit is tested
automatically on
our build farm,
including both
builds and
regression tests.
!

Results are
integrated into
the gerrit review• Catches Cmake build errors

• Catches Google test unit test failures

CI tests - for every patch

• Unit Tests: Do modules reproduce reference values?

• Regression tests: Are previous simulation results identical?

• Clang AddressSanitizer: Catch silent memory errors

• Clang/GCC ThreadSanitizer: Thread synchronization errors

• Clang Static Analyzer: Logical execution dependency errors

• Uncrustify: Proper code formatting, no tabs, brace standards?

• Doxygen: All classes/methods/arguments/variables documented?

Book-keeping
Bugtracking

Feature tracking
Developer discussions

Redmine issue tracking

Automatic referencing 
in commit messages!

• Version 1.2.3 has bug X!
• Windows builds broke
• How is the work going on 

refactoring module Y?
• Should we improve 

scaling by method Z or W? 

• Why did we decide to
modify that loop in file F
in git change Icfca5a?

Languages?
• “REAL PROGRAMMERS CAN WRITE  

FORTRAN IN ANY LANGUAGE”

• "C combines the flexibility and power of assembly language
with the user-friendliness of assembly language."

• “C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off.”

• The actual C++ nightmare: You accidentally create a dozen
instances of yourself and shoot them all in the foot. Providing
emergency medical care is impossible since you can't tell
which are bitwise copies and which are just pointing at others
and saying, "That's me over there."

cluster 1

cluster 0

cluster 2

server

msm_titin

gen4_r3

gen4_r0
gen4_r1
gen4_r2

cmd queueprojects

projects

gen4_r0
gen4_r1
gen4_r2
gen4_r3

server

msm_villin

free_energy

gen0_r0
gen0_r1

lambda0
lambda1

gen0_r2

cmd queueprojects
gen0_r0
gen0_r1
lambda0
lambda1
gen0_r2

server

cmd queueprojects
server

user
command line client

browser

user
command line client

browser

worker
worker
worker
worker
server

worker
worker
worker
worker

cmd queue
server

projects
server

worker
worker
worker
worker
server

worker
worker
worker
worker

cmd queue
server

worker
worker

worker
worker

worker
worker

worker
worker
worker
worker

cmd queueprojects
server

worker
worker
worker
worker
server

worker
worker
worker
worker

server

worker
worker
worker
worker

New level (for us) of network-
centric programming

copernicus

Python rocks for this!

Language hierarchies

C Inline ASM intrinsics a = _mm_add_ps(b,c);
(translated into single instruction)

Low-level code in C++
(very few C++ features allowed)

Performance-sensitive code
Direct memory manipulation

High-level code in C++
(most C++ features allowed)

Object instantiation/destruction
handles memory (de-)allocation
Exception-based error handling

User-level code in Python Copernicus

• Large-scale C++ software design [John Lakos]

• Design Patterns - Elements of Reusable Object-oriented software
[Gamma, Helm, Johnson, Vlissides] “Gang of four”

• Refactoring to Patterns [Joshua Kerievsky]

• Refactoring - improving the design of existing code [Martin Fowler]

• Effective C++ - 55 specific ways to improve your programs and design
[Scott Meyers]

• Patterns for concurrent, parallel, and distributed systems:  
http://www.cs.wustl.edu/~schmidt/patterns-ace.html

• What everybody should know about floating-point math: 
http://randomascii.wordpress.com/category/floating-point/

Some good reading

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://randomascii.wordpress.com/category/floating-point/

Use the source, Luke
http://www.gromacs.org

git://git.gromacs.org
http://gerrit.gromacs.org

http://redmine.gromacs.org
http://jenkins.gromacs.org

(there are lots of other programs out there too!)

http://www.gromacs.org
http://gerrit.gromacs.org
http://redmine.gromacs.org
http://jenkins.gromacs.org

