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ABSTRACT

We present benchmark results of optimized dense matrix
multiplication kernels for Cypress GPU. We write general
matrix multiply (GEMM) kernels for single (SP), double
(DP) and double-double (DDP) precision. Our SGEMM
and DGEMM kernels show ~ 2 Tflop/s and ~ 470 Glop/s,
respectively. These results for SP and DP correspond to 73%
and 87% of the theoretical performance of the GPU, respec-
tively. Currently, our SGEMM and DGEMM kernels are
fastest with one GPU chip to our knowledge. Furthermore,
the performance of our matrix multiply kernel in DDP is 31
Gflop/s. This performance in DDP is more than 200 times
faster than the performance results in DDP on single core of
a recent CPU (with mpack version 0.6.5). We describe our
GEMM kernels with main focus on the SGEMM implemen-
tation since all GEMM kernels share common programming
and optimization techniques. While a conventional wisdom
of GPU programming recommends us to heavily use shared
memory on GPUs, we show that texture cache is very effec-
tive on the Cypress architecture.

Categories and Subject Descriptors

F.2.1 [Numerical Algorithms and Problems|: Compu-
tations on matrices; C.1.2 [Multiple Data Stream Archi-
tectures (Multiprocessors)]: Single-instruction-stream,
multiple-data-stream processors

1. INTRODUCTION

Dense matrix computation is an important problem in com-
puter science and engineering. Since it is compute inten-
sive and exhibit regular memory access, it is well suited for
acceleration by a many-core architecture like GPUs. There
were previous works to implement and try to speed-up dense
matrix computation especially dense matrix multiplication
with GPUs [7, 18, 13]. Many important numerical algo-
rithms such as BLAS-3 itself and LU factorization rely on
high speed GEMM implementations [11, 5, 18]. In [18], it
has shown that after detailed and precise analysis of GPUs

from NVIDIA they could significantly accelerate one sided
factorizations in SP.

In this paper, we present our effort to implement GEMM
kernels for GPUs from AMD. Our focus on this paper is
how we program GPUs in an optimal way for GEMM com-
putations. We present benchmark results for SGEMM and
DGEMM. Furthermore, for the first time, we show GEMM
in DDP (DDGEMM) is very fast on GPUs and present
benchmark results. We believe DDGEMM will be rather
critical in many applications with a trend such that we will
require ever larger problem size.

This paper organized as follows. In Section 2, we briefly
summarize architecture of a GPU that we use in the present
work and show comparisons with a competing GPU. We re-
fresh a basic fact on a blocking GEMM algorithm in Section
3. Section 4 is our main contribution that describe details
and analysis of our GEMM kernels for the GPU. In this
section, we also present the benchmark results of SGEMM,
DGEMM and DDGEMM. Finally, we conclude in Section 6
with a mention to future work.

2. GPU ARCHITECTURE

In this section, we briefly summarize the Cypress GPU ar-
chitecture[3].

2.1 Cypress Architecture

The Cypress GPU from AMD is the company’s latest GPU
(as of time of writing) with many enhancements for general
purpose computing on GPU (GPGPU). It has 1600 arith-
metic units. Each arithmetic unit called a stream core (SC)
is capable of executing SP floating-point (FP) multiply-add.
Stream cores are organized hierarchically as follows. At one
level higher from the stream cores, a five-way very long in-
struction word (VLIW) unit called a thread processor (TP)
that consists of four simple stream cores and one transcen-
dental stream core. Therefore, one Cypress processor has
320 TPs. A TP can execute either at most five SP/integer
operations, four simple SP/integer operations with one tran-
scendental operation, or DP operations by combinations of
the four stream cores. Each TP has a register file of 1024
words where one word is 128 bit (4 SP words or 2 DP words).
16 TPs are grouped into to consist of an unit called a SIMD
engine. A SIMD engine is an unit of kernel execution in the
Cypress GPU. All TPs in the SIMD engine work in single-
instruction-multiple-thread (SIMT) way. At the top level
of the GPU, there are 20 SIMD engines, a controller unit



Architecture Cypress Fermi
Board Name Radeon 5870 | Tesla C2050
# of SP cores 1600 448
# of DP cores 320 224
# of vector cores 20 14
registers/core 256 KB 128 KB
tex. cache/core 8 KB 12 KB
shared mem./core 32 KB 64 KB
2nd cache 512 KB 768 KB
core clock(GHz) 0.85 1.15
SP peak(Tflop/s) 2.72 1.03
DP peak(Gflop/s) 544 515
memory clock(GHz) 1.2 0.75
memory bus 256 384
memory size(GB) 1 3
memory BW (GB/s) 153.6 144
tex. cache BW(GB/s) 54.5

Table 1: Comparison between Cypress and Fermi
GPU boards. Register, texture cache and shared
memory size is per vector core.

called an ultra-threaded dispatch processor, and other units
such as units for graphic processing, memory controllers and
DMA engines. An external memory attached to the Cypress
GPU is 1 GB GDDR5 memory with a bus width of 256 bit.
It has a data clock rate at 4800 MHz and offers us a band-
width of 153.6 GB/s.

At the time of writing, the fastest Cypress processor is run-
ning at 850 MHz and offers a peak performance of 1600 x 2 X
850 x 10 = 2.72 Tflop/s in SP operations. With DP opera-
tions, the four stream cores in each TP are working together
to compute either two DP addition, one DP multiply, or
one DP fused-multiply-add (FMA). Note the transcenden-
tal stream core is not used in DP operations. Accordingly,
we have 320 x 2 x 850 x 10° = 544 Gflop/s in DP operations.

In the present work, we have programed the Cypress GPU
through an assembly like language called IL (Intermediate
Language). The IL is like a virtual instruction set for GPUs
from AMD. With IL, we have full control of every VLIW
instructions. The device driver for a given GPU compiles IL
instructions into the corresponding code in the instruction
set architecture when we load a kernel written in IL.

2.2 Comparison with Other Architecture
Table 1 shows comparison between two latest GPU archi-
tectures: Cypress and Fermi [2].

Both architectures have introduced in 2009. They are some-
how in similar performance range. A list of notable differ-
ences between two architectures is as follows: (a) A vector
core in Cypress is 16 VLIW (5-way) processors working in
SIMT. (b) A vector core in Fermi is 32 scalar processors
working in SIMT. (¢) Accordingly, effective vector length in
SP per vector core is 16 x 5 = 80 for Cypress and 32 for
Fermi, respectively. (d) Fermi has writable cache and ECC
feature.

3. BLOCKING MATRIX MULTIPLICATION

To effectively utilize respectable computing power available
by GPUs (see Table 1), a blocking algorithm is necessary
to accommodate with massive bandwidth requirement. In
this section, we present analysis of the blocking algorithm
for matrix multiplication.

In the following, we only deal with square N X N matrix.
And in this section, we consider to compute matrix multi-
plication as C' = AB where A, B,C are all square N x N
matrices. Note GEMM is defined as C' «— aAB + C how-
ever the computation of C' = AB is dominant in a GEMM
implementaion.

Let divide a square N x N matrix into blocks of b x b square
matrices!. The input matrices A and B are divided into
(N/b)? blocks. To compute matrix multiplication of the
blocked (divided) matrices, we read 3b® words from A, B
and C, do 2b® floating-point operations, and write b*> words
for C'. If we can save a block of C' on registers, we need to
read 2b% (two blocks from each A and B) to update b words
on registers in each iteration. In this case, required memory
words per a floating-point operation is W = 2b%/2b® = 1/b
words/flop. The required memory bandwidth is computed
as

Baeemm =W x F x S byte/s (1)

where F' is floating-point operations per second and S is
the word size in bytes. Clearly, larger b we need relaxed
bandwidth requirement at a factor of 1/b.

Suppose we implement DGEMM on Cypress GPU, i.e., S =
8. It has the theoretical peak speed of F' = 544 Gflop/s. If
we assume that b is small enough to put a block of C' on each
thread processor’s register file, we need memory bandwidth
of BpgEMM = 0.544(Tﬂ0p/s) X 8/b = 4.352/b TB/S. With
b =1 (non-blocking algorithm), we need massive bandwidth
of > 4.3 TB/s while the memory bandwidth of the GPU is
only ~ 150 GB/s. With b = 4, the required bandwidth is
reduced to be Bpgemm = 1.088 TB/s. This is exactly match
to aggregate bandwidth of texture cache units on Cypress
GPU since the texture cache unit on each SIMD engine can
fetch data at 54.4 GB/s and we have 20 SIMD engines on a
chip, i.e., 54.4 (GB/s) x20 = 1.088 TB/s. For SGEMM, we
need bandwidth of Bsgemm = 10.88/b TB/s where F' = 2.72
Tflop/s and S = 4 hence b > 10 will be good choice. On
the other hand, memory access in Cypress architecture is
done in 128 bit hence it is desirable that b is multiple of 4
in SP. We will use b = 8 in the present work as explained in
later sections. For DDGEMM, we estimate the theoretical
performance in DD operations is roughly F' = 37.5 Gflop/s
(see Appendix A) so that we have Bopeemm = 0.6/b TB/s
where S = 16. In case of DDGEMM, we might not need the
blocking algorithm at all.

4. GEMM ON CYPRESS GPU

In this section, we describe detailed of our GEMM imple-
mentations.

4.1 Implementation Choices

Even we force to use the blocking algorithm, there are many
alternative implementations with a given GPU architecture.
Here, we summarize three critical decisions we made.

1p is also called the blocking factor.



4.1.1 How large is block size?

A software development kit (SDK) for GPUs from AMD is
shipped with sample applications including many variants
of GEMM written in IL and OpenCL. In addition, ACML-
GPU ver.1.1, that includes SGEMM, DGEMM, ZGEMM
and CGEMM,, is available with the source code. All imple-
mentations supplied by AMD adopt 4 x 8 block (in SGEMM)
because they use the output stream to store matrix C. We
have up to 8 output streams in the Cypress GPU. Each
thread writes 128 bit data (4 SP/2 DP words) on a given
output stream so that in total a thread can output 32 SP/16
DP words at most. With this constraints, the maximum pos-
sible blocked matrix is 4 x 8 for SGEMM. This block size is
too small to relax the memory bandwidth requirement. For
DGEMM, we can arrange a blocked matrix in either 2 x 8
or 4 x 4.

Alternatively, we can store matrix C' on the global memory.
A good thing with the global memory is that we can access
arbitrary position with linear address while with the output
stream we write data into a predetermined position for each
thread. A further distinction between the global memory
and output stream is that the global memory is read/write
memory but the output stream is write-only memory. So,
the global memory is much more flexible but we need to
explicitly calculate linear address before we access it. With
the output stream, no address calculation is required.

In the present work, we adopt the global memory to store
matrix C since 4 x 8 block is not enough to relax the band-
width constraints for SGEMM implementation. Also, if
we implement not just a simple matrix multiplication as
C = AB but real GEMM operations as C' «— aAB + (C,
we require read access to C' but it is tricky to use the output
stream to implement GEMM operations if possible. An-
other drawback of the output stream is that we have to split
matrix C' into multiple stripes since each output stream cor-
responds to a block of memory on a host memory if we use
multiple output streams. It requires additional memory ar-
rangement and copy work on host because input matrices
to a GEMM kernel is usually one block of memory region.
With the global memory, we can preserve the given memory
view of input matrices.

4.1.2  Pixel shader or compute shader?

In programing IL, we have two types of compute modes.
Pizel shader is usually used to implement graphics pipelines
with presumably graphics specific optimizations in hardware
level. Even with the pixel shader, we can write a kernel
that do general computations. In this mode, the system
assign each thread with two-dimensional thread numbers.
This reflect a fact that a pixel shader works on group of
pixels, i.e., an image, a texture or a frame buffer.

Compute shader is specially prepared for GPGPU. In this
mode, we have more flexibility such that we can use shared
memory only in this mode. Also, the system assign each
thread with one-dimensional (flat) thread numbers. Another
critical difference is that with the compute shader we have
control on how many active threads for a given kernel. How-
ever, in the pixel shader, we have no control of a number of
threads. A number of threads in the pixel shader is deter-
mined by the system presumably depending on a number of

live registers as we will describe later.

We can implement GEMM in both modes but after some
experiments, we have chosen the pixel shader in the present
work because it shows better performance. This decision is
closely related to a next decision that we do not use shared
memory in our implementation.

4.1.3 Which memory type do we put blocks of A, B,C?

In a fast GEMM implementation for GPUs [18], they put
blocks of matrices A and C' on the register file and a block
from B on shared memory. According to analysis described
in [18], shared memory on the GPU they have used has not
enough memory bandwidth to make vector cores busy. They
have estimated that a theoretical throughput of GEMM ker-
nel using shared memory is 66% of the peak performance
at most. With their SGEMM implementation, they have
obtained 60% of the peak performance. It seems that a sit-
uation is not changed with Fermi GPU [17]. In [17], they
put matrices A and B on shared memory and matrix C on
registers with additional tuning. Their DGEMM kernel for
Fermi GPUs shows roughly 60% of the peak performance.

In the present work, we put whole matrix C' on the global
memory and put blocks of matrix C' on the register file.
For blocks from matrices A and B, we have two options:
(1) following [18], first a group of thread load the blocks
into shared memory (local data store (LDS)) and then fetch
data from the LDS into registers in each iteration. (2) we
directly read the blocks from GPU main memory through
texture cache. In either case, we put whole matrices A and
B on the input stream data.

On Cypress, both LDS and cache units have aggregate band-
width of 1.088 TB/s for fetching data®. Texture cache is
managed by the hardware with no strict control by a pro-
grammer while normally LDS is used as software cache.
With LDS, we have to manage memory allocation by ourself
and calculate address for every read/write access. Also, we
need to care about possible read conflicts between threads
or coalesced memory access. We must say it is not easy
although a fairly large fraction of optimization efforts in
previous studies on GPGPU has been devoted to how to
use software cache effectively ® Obviously, hardware cache
is easier to cope with from a programmer’s view. Since mem-
ory access pattern of GEMM is regular, we suppose it is a
good bet to rely on the hardware cache system.

4.2 SGEMM Implementation

According to the analysis of the blocking algorithm, b > 8
is desirable to implement SGEMM on Cypress GPU. If we
fix the block size and decide to choose the pixel shader, we
have no large room for optimizations so that automatic tun-
ing techniques [13] is not very effective for a simple kernel
like GEMM. One consideration is that a unit of memory

2 According to the specification, LDS also has a capacity of
1.088 TB/s for write access in parallel.

3Fermi’s 64KB shared memory on each vector core is con-
figurable to choose either (a) 16KB for cache and 48 KB
for shared memory or (b) 48KB for cache and 16 KB for
shared memory. It is not clear [17] adopted either mode and
whether they use the this configurable cache.



access in Cypress architecture is 128 bit (4 SP words). Ac-
cordingly, it is better to make a block size multiple of 4 in
SGEMM implementation. In the present work, we choose
b = 8 for our SGEMM implementation and we obtain a good
performance as we will show. As we already mentioned in
section 2, b = 8 is not optimal since we need bandwidth
of Bsgemm = 1.36 TB/s while the bandwidth of texture
cache unit on Cypress GPU is 1.088 TB/s. With larger b,
hopefully we will have better performance while we will face
severe register pressure if we set b = 12 for instance.

In the present paper, we used the following system for all
benchmarks. CPU we used is Intel Core i7 920 (2.67GHz)
with 3GB of DDR3-1066 memory. The motherboard is ASUS
P6T (Intel X58 chipset). The GPU board is Sapphire Radeon
HD5870 with the reference setting. We used Linux kernel
2.6.31 (x86_64) and Catalyst 10.7 for the device driver and
the Stream SDK version 2.1.

4.2.1 Kernels for SGEMM

In the present work, we assume that matrices are in row-
major format. In the following sections, we use i and j as
indexes for a whole matrix. We use I and J to indicate
indexes for each block. Namely, with N x N square matrix
A, A(j,1) represents a element (1 word) of the matrix A
where ¢ and j are running from 0 to N — 1. With the block
size b, we have (N/b)? blocks and each block is identified
with I and J, e.g., A[J,I] represents a block (b* words) of
the matrix A where I and J are running from 0 to N/b— 1.

On Cypress GPU, a kernel is executed by a group of threads.
The total number of spawned threads equals to (N/b)? if N
is multiple of b. Note we only consider that this assumption
is always hold in the present work. In Figure 1, we present
a structure of our SGEMM implementation. In the cur-
rent implementation, each thread is responsible for C[J, I]
that is resided on registers and we adopt the rank-1 update
(i.e., outer product based) algorithm. The kernel consists of
three parts; (1) initialization of registers for accumulation,
(2) rank-1 update loop and (3) merging of results.

At k-th iteration of the main loop, the kernel fetch a column
of data (A(bJ : bJ +7,k); 8 SP words) from matrix A and a
row of data (B(k,bl : b + 7)) from matrix B, and compute
the outer product between the column and the row as shown
in Figure 2. Note this figure corresponds to SGEMM with
both matrices A and B in non-transpose format (hereafter
we call this “NN” kernel). If input flags to GEMM is to spec-
ify transpose matrix A, memory access pattern is different
as shown in Figure 3 (we call this “TN” kernel). With 128
bit memory access mode in mind, we expect that the TN
kernel is desirable for Cypress GPU. At the moment, we do
not implement all patterns of a kernel (e.g., NN, TN, NT,
TT). For SGEMM, we only implement the TN kernel. In
the following, we analyze the SGEMM TN kernel.

4.2.2  Analysis of the SGEMM TN kernel

As noted previously, we write our GEMM kernels in IL. As
far as we understood, there are one-to-one mapping between
most of IL instructions and real ISA for a given hardware.
The device driver of GPU hardware compile IL instructions
into real ISA when we load a kernel written in IL. At the
same time, the device driver does register allocation for a

// declare A and B as input streams
// declare C as global memory
float c[8][8], al[8], b[8]; // on registers

// zero clear accumulator registers
c[0:7]1[0:7] = 0.0

for k = 0 to N-1
// fetch a column from A
load al[0:3] <- A(bJ:bJ+3, k)
load al[4:7] <- A(bJ+4:bJ+7, k)
// fetch a row from B
load b[0:3] <- B(k, bI:bI+3)
load b[4:7] <- B(k, bI+4:bI+7)

// 8x8 rank-1 update
c[01[0:3] += a[0]*b[0:3]; // 8 flops
c[01[4:7] += al[0]l*b[4:7];

c[1]1[0:3] += a[1]1*b[0:3];
c[1]1[4:7] += a[1]l*b[4:7];

c[71[0:3] += a[7]1*b[0:3];
c[71[4:7] += a[7]1*b[4:7];
end
Merge c[][] with C[J,I]

Figure 1: A pseudo code of our SGEMM implemen-
tation that shows a structure of the code in IL.

given GPU architecture. We found the register allocation is
critical to get an optimal performance as explained below.

With pixel shader, a number of active threads per TP is
automatically controlled at the system level as far as we un-
derstand. In [3] (Table 4.8), they present a relation between
the active number of threads and the number of register used
in a given kernel. This relation is approximately expressed
in a following equation:

(# of active threads) = [256/(# of registers)| x 4. (2)

A more number of active threads, there is a better chance
to hide memory access latency hence we could have bet-
ter performance. For the SGEMM implementaion with our
strategy described above, we need 16 registers (64 SP words)
to store a block from matrix C and 4 registers to fetch two
stripes, each of which is 8 SP words, from matrices A and B.
Accordingly, we need at least 16 +4 = 20 registers to imple-
ment a SGEMM kernel. Note we certainly need additional
registers for address calculations and loop counter.

To see the importance of register allocation, we show two
variants of the SGEMM kernel as (a) highly optimized ker-
nel and (b) less optimized kernel. We arrange the latter
kernel by artificially tweaking the highly optimized kernel
to make requiring more live registers. The highly optimized
kernel needs 25 registers but the less optimized kernel con-
sumes 37 registers. With our formula (Equation (2)), we
would have 40 and 24 threads for the two kernel, respec-
tively. Figure 4 shows the performance of the two kernels as
a function matrix size N. In this plot we compare the highly
optimized kernel (in red solid circles) and the less optimized
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Figure 2: Schematic presentation of our GEMM implementation on Cypress GPU with GEMM flags “N” for
both matrices A and B. Each thread computes a block of matrix C' shown in the red square C[J,I]. In each
iteration of the main loop, each thread reads the red stripes from matrices A and B to do the rank-1 update
on the block. In total, we need N iterations to complete.

bJ
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Matrix Bj
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Matrix A

Figure 3: Schematic presentation of our GEMM implementation on Cypress GPU with GEMM flags “T” for
matrix A and “N” for matrix B. Notation is same as Figure 2 except in this case each thread reads a stripe

from matrix A in transposed order.

kernel (in green squares). It is clear that two kernels show
rather different performance with the ratio of the computing
speed between two kernels ~ 1.3. We conclude that a critical
optimization technique in GEMM kernels on Cypress GPU
is to reduce the number of live registers as much as possible.

4.3 DGEMM and DDGEMM Implementation
We implement DGEMM and DDGEMM kernels as a strait-
forward extension from the SGEMM kernel. A difference
from the SGEMM kernel is the blocking factor b. We set
b =4 and b = 2 for DGEMM and DDGEMM, respectively.
For DDGEMM, we have implemented the DD emulation
scheme in IL as described in Appendix A.

For DGEMM, we have implemented TN and NN kernels.
We present the performance of our DGEMM kernels in Fig-
ure 5. In this Figure, we compare our results with ACML-
GPU 1.1 running on Cypress, MAGMA BLAS 0.3 running
on Fermi [17], and GotoBLAS2 [8] on the host CPU. Note
that our results on upper half (A°*B(TN) and AB(NN)) and

the result with MAGMA BLAS (AB(Fermi)) * show results
that do not take into account data transfer time between
CPU and GPU. While our result in lower half (A*By/o) and
the result with ACML-GPU (A"B;;0(ACML)) show results
that take into account the data transfer. As we compare our
results with MAGMA BLAS 0.3 both of our kernels show
better performance despite the theoretical peak performance
of Cypress and Fermi GPUs is comparable. The result with
GotoBLAS2 is ~ 43 Gflop/s on our system. Our GEMM
kernels for Cypress GPU are 10 times faster than a 4 core
CPU.

The performance of NN kernel is slower than TN kernel.
We speculate a reason that two kernels do memory access
to matrix A in different way as described in Figures 2 and 3.
Another reason is that since the memory access is done with
128 bit in row-major formant, NN kernel first fetches four
128 bit words (8 DP words) and then only uses half of the

4This result corresponds to NN in our definition

Matrix B



SGEMM TN | DGEMM TN | DGEMM NN | DDGEMM TN (FMA) | DDGEMM TN (no FMA)
Pmax 2014 472 359 31 23
Nmax 4352 1664 3712 1408 768
7 of reg. 25 25 25 18 29
4 slots(%) 25.8 94.1 94.1 90.9 90.9
5 slots(%) 58.1 0 0 0 0

Table 2: Performance analysis of our GEMM variants. Pmax and Nmax rows show the peak Gflop/s and
the corresponding the matrix size that shows a peak performance. 3rd row presents a number of register
used in a given kernel. 4th and 5th rows indicate a fraction of occupied VLIW slots in a given kernel. For
instance, in SGEMM TN kernel, 25.6% and 51.8% of all instructions consume 4 and 5 VLIW slots on each
TP, respectively. It means our SGEMM kernel highly (close to 84%) utilize the available computing resource.
DGEMM and DDGEMM kernels show even higher utilization.
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Figure 4: SGEMM performance as function of N
for two variants. The optimized SGEMM uses 25
registers while the naive SGEMM uses 37 registers.

data just fetched as depicted in Figure 6. Note other half of
the data is used in the next iteration. On the other hand,
with TN kernel, the memory access is row-major in nature
hence we need to fetch two 128 bit words (4 DP words) and
use all data in the current iteration. The memory access
pattern in NN kernel seems to be not match to execution
model on Cypress GPU since for the pixel shader a group of
2x2 threads called quad is always processed together [3].

For DDGEMM, we have only implemented TN kernel at
the moment. Overall trend in performance as a function of
N looks similar to SGEMM and DGEMM kernels. With
N > 512, our DGEMM TN kernel shows the peak perfor-
mance of ~ 31 Gflop/s. This result is obtained with the
kernel that takes advantages of FMA instructions. Without
FMA instructions, the performance drops to ~ 23 Gflop/s.
See Appendix A for effectiveness of FMA instruction in the
DD emulation scheme. We have compared the performance
of our DDGEMM kernel with performance obtained with
the mpack version 0.6.5 [16]. The performance of mpack
running on single core of Core i7 920 (2.67 GHz) is ~ 140
Mflop/s. Although there seems to be a large room for possi-
ble optimization for mpack, our DDGEMM kernel running
on Cypress GPU is more than 200 times faster.

Table 2 summarize the all benchmark results of our GEMM
kernels. 4th and 5th rows show a fraction of occupied VLIW
slots in a given kernel. Sum of two rows is not 100% because
a residual is the fraction of instructions where either 1, 2
or 3 slots are occupied. Those low utilized VLIW instruc-
tions are necessary for computation of address, updating the
loop counter, and other calculations. With SGEMM kernel,
roughly 60% of VLIW instructions occupy 5 slots that use
all 5 SCs on each TP while other 26% occupy 4 slots that use
4 SCs. With DGEMM and DDGEMM kernels, more than
90% of VLIW instructions occupy 4 slots that is maximum
in DP operations.

4.4 Timing Model of Data Transfer

In Figure 5, we plot the benchmark result with taking into
account data transfer time between host and GPU memory.
It is shown in lower region of the Figure with “I/O”. The
result for ACML-GPU is also obtained with the same way.
To implement GEMM, we need to communicate O(N?) data
through PCI-Express bus and we do O(N?®) floating-point
operations on Cypress GPU. With small N, the time for
data transfer dominates the computing time on the GPU as
shown in Figure 5.

Here, we construct a model for an elapsed time (TbcemMm)
of one DGEMM call as follows.

TDGE]\IM = Tcomm + chrncl, (3)

where Teomm and Tiernel represent the elapsed time for data
transfer and the elapsed time for the kernel execution on the
GPU. Teomm are simply defined as
32N?
Brcre’

(4)

where Bpcire is transfer speed between CPU memory and
GPU memory in byte/s since we send three matrices and
receive one matrix, i.e., 32 = 4 x 8 bytes. The elapsed time
of the kernel execution on GPU is expressed as

2N3

Tiernel = o’ (5)

where F' is floating-point operations per second of a given
kernel. From these equations, we can write the performance
in Gflop/s as 2N3/TpgrmMum.

Tcomm -

Figure 7 shows comparison between the performance of our
DGEMM TN kernel and our timing model. Here we set pa-
rameters as Bpcre = 3 GB/s and F = 450 Gflop/s. Our
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Figure 5: DGEMM performance as function of N. We compare our results with ACML-GPU 1.1 and
MAGMA BLAS 0.3 running on Fermi [17]. Note the lines without I/O show the performance that dose not
take into account data transfer time between CPU and GPU.

timing model works rather well. In all range of N we have
benchmarked, a limiting factor in our current DGEMM im-
plementation is slow data transfer between host and GPU
memory with effective bandwidth of only ~ 2—3 GB/s. On
the other hand, the theoretical bandwidth of PCI-Express
bus Gen.2 is 8 GB/s. If we have a hypothetically better I/O
bus with Bpcre = 10 GBsfl, the predicted performance of
our DGEMM kernel is shown in the blue dashed line. In this
case, N > 2048 is enough to reach potential performance
of our DGEMM kernel. Another possible optimization for
data transfer is to overlap communications and computa-
tions. That will be our future task for real applications such
as LU factorization.

4.5 Comparison to Other Work

[18] has presented an optimized GEMM implementation for
GeForce GPUs. Their SGEMM runs at ~ 60% of the peak
performance while CUBLAS 1.1 runs at ~ 40% with the
same GPUs. [13] have presented auto-tuning techniques
for GEMM on GeForce GPUs and shown that their auto-
tuned SGEMM and DGEMM are slightly faster than those
of CUBLAS 2.0, that adopted the GEMM implementation
by [18]. [10] have presented another auto-tuning framework
in OpenCL for GEMM. [17] presented DGEMM implemen-
tations for Fermi GPU with ~ 60% of the peak.

In this paper, we present GEMM implementations for Cy-
press GPU. Our GEMM implementations are fastest with

one GPU chip and show very high performance efficiency
compared to the peak performance. Our SGEMM TN ker-
nel runs at 55 - 73% of the peak performance. Even at the
lowest efficiency, our SGEMM is faster than [18, 13]. Our
DGEMM TN and NN kernels are even more efficient as 74
- 87% of the peak. With the same hardware, we did the
benchmark of the DGEMM kernel in ACML-GPU where
we take into account data transfer between host and GPU
memory. We found that our DGEMM substantially outper-
forms ACML-GPU even though we did not optimize data
transfer at all. A critical difference between our DGEMM
and that of ACML-GPU is the blocking factor b. Finally,
if we compare the performance of our GEMM kernels with
an advanced implementaion [8] for a multicore CPU (4 core
running at 2.67 GHz), our TN kernel roughly 10 times faster
as shown in Figure 5.

There are BLAS implementations with higher precision than
DP [1, 16]. [1] supports SP, DP and DDP and only imple-
ments a part of BALS routines while [16] supports various
high precision arithmetic libraries not only DDP and imple-
ments even a part of LAPACK routines. Our new contribu-
tion is that for the first time we show DDGEMM on GPU
is very fast and efficient. Our DDGEMM shows 83% of the
estimated peak performance in DDP. The computing speed
of 31 Gflop/s in DDP is more than 200 times faster than the
performance of mpack in DDP.

S. CONCLUSION
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Figure 7: Comparison between the performance our
DGEMM TN kernel (shown in red squares) and our
timing model (shown in green dashed line). The
blue dashed line shows the performance prediction
with better communication bandwidth.

We described our GEMM kernels for Cypress GPU. With
three critical decisions to design GEMM kernels for Cy-
press, we presented detailed description of SGEMM kernels.
DGEMM and DDGEMM kernels are implemented as a natu-
ral extension from the SGEMM kernel. Our GEMM kernels
are fastest at the moment without too complicated tuning
efforts thanks to the texture cache on Cypress architecture.
In our opinion, a large fraction of previous work regarding
GPGPU has been dealing with how to use shared memory
effectively as software cache. In contrast, the texture cache
is implemented as hardware so that we can skip those efforts
that were thought to be necessary. Even with our insight, it
will be a possible future work to utilize LDS for GEMM ker-

nels. Also, the performance of SGEMM and DGEMM with
N > 1024 is not flat as in other work but fluctuating and
slightly decreasing at large N > 2048. To address reasons
for such trend and try to remove performance decrease will
be another future work.
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APPENDIX

A. DD EMULATION ON CYPRESS GPU

To implement DDGEMM on Cypress GPU, we have writ-
ten the DD emulation code in IL. The emulation scheme
was originally proposed by [12] and [6]. [9] presented quad-
double precision scheme as an extension. We have imple-
mented DDP arithmetic routines in IL by referring the al-
gorithms used in [9, 4]. We have used our DDP routines in
our compiler system for many-core accelerators as described
in [15, 14].

In this scheme, a DD variable is expressed as a sum of two
DP variables and we utilizes DP arithmetic units to emu-
late DDP arithmetic operations. One addition and multiply
in DDP requires 21 and 25 DP instructions, respectively.
Note this is an implementation with naive algorithm with-
out FMA instructions. Multiply in DDP is efficiently imple-
mented with FMA instructions. In this case, we only need
8 DP instructions for multiply. We define a peak perfor-
mance of Cypress GPU in DD operations as follows. In the
present work, we are dealing with GEMM so that we require
equal number of addition and multiply operations. namely,
we count an average number of instructions in this case as

(21 4+ 25)/2 = 23. Accordingly, we estimate a peak perfor-
mance in DDP is 544 (Gflop/s) /23 = 23.7 Gflop/s. With
FMA instructions, we have a better average instructions as
(214 8)/2 = 14.5. In this case, a peak performance in DDP
is 544 (Gflop/s) /14.5 = 37.5 Gflop/s.

It is obvious that the DD emulation scheme is well-suited
for GPU architecture since the scheme is compute inten-
sive by definition. More precisely, to compute addition in
DDP, we read 4 DP words as inputs and write 2 DP words
as a result while we do 21 DP operations hence we have
W =6/21 ~ 0.29 words/flop for addition and W = 6/25 ~
0.24 words/flop for multiply (without FMA). These num-
bers are 4 times compute intensive than a simple add/mul
in DP. With DGEMM with FMA instructions, we have W =
6/14.5 ~ 0.41. It is still easier for GPUs with the limited
memory bandwidth.



