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Recently, many-core accelerators are developing so fasttfile computing devices attract re-
searchers who are always demanding faster computers. Biang-core accelerators such as
graphic processing unit (GPU) are nothing but parallel catens, we need to modify an exist-
ing application program with specific optimizations (mggthrallelization) for a given accelera-
tor. In this paper, we describe our problem-specific comgistem for many-core accelerators,
specifically, GPU and GRAPE-DR. GRAPE-DR is another mange@acelerators device that is
specially targeted scientific applications. In our compilee focus a compute intensive problem
expressed as two-nested loop. Our compiler ask a user te gaihputations in the inner-most
loop. All details related to parallelization and optimipattechniques for a given accelerator are
hidden from the user point of view. Our compiler succesgfgénerates the fastest code ever for
astronomical N-body simulations with the performance & PFLOPS (single precision) on a
recent GPU. Another successful application on both GPU @RARE-DR is the evaluation of a
multi-dimensional integral in quadruple precision. Thegram generated by our compiler runs
at a speed of 15 QD-GFLOPS on GPU and 4 QD-GFLOPS on GRAPE-D& pérfomance
obtained so far is more than 50-200 times faster than a ctioneh CPU.
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1. Introduction

The rise of many-core accelerators such as Cell and GPU opens aayaf igh performance
computing. An important question is what types of practical applicationsfacgent on many-
core accelerators. Our simple answer is a problem that requires highutoehensity. Even in
Cell and GPUs with the external memory bandwidth-at00 GB s or more, the memory-wall
problem is quite severe since the raw performance of these procéssaseveral 100 GFLOPS)
is very high compared to the memory bandwidth. Applications that allow repeatied of data or
applications with high compute density are the most efficient on many-coe¢esators (and also
on general purpose CPUSs).

A well-known example of this type of applications is a many-particle simulation.stroa
nomical many-particle simulations, the most time consuming part is the evaluatiortwdlfarce
between patrticles:

N m; (X —Xj)
Z (I —xj|2+ £2)3/2°

(1.1)

wherex;, my, € are position of a particle, the mass, and a parameter that prevents diwstend)
respectively. Given a number of particls this force evaluation require®(N?) complexity but
other part of the simulations, such as orbit integration, requires@il complexity. It was shown
that one can do the evaluation of mutual force very efficiently with an aateledevice called
GRAPE (GRAvity piPE) [[L[R]. Thi€O(N?) direct summation force evaluation is fundamental to
the modeling of dense star clusters that are collisional system. Note thatgher@©(NlogN)
method [B] for collision-less system like galaxy and cosmological simulatiohtheumethod is
not applicable to star clusters.

The GRAPE system is widely used in astronomical community. It is a speciailyrascom-
puting system to calculate Newtonian gravity between particles expressed(ing. In GRAPE
system, all calculations except computation of Ed.(1.1) are done on adwputer that controls
GRAPE system. The host computer serdandm; to GRAPE and receives results In other
words, only the most computing intensive part of many-particle simulationsnigpuoted on the
specially developed component. Apparently, this same work division teohiggapplicable to a
system with GPU (4] and many others). N&N?) direct summation force evaluation is very
effective for many-core accelerators because in this evaluation tanbret of data is reused(N)
times.

A class of applications with high compute density is dense matrix multiplication. To wmp
square matrix l x N) multiplication, we require B2 operations with a naive implementation.
In other words, each element of data is reu€gt®®) times. Although compute density of the
dense matrix multiplication is not as high as the force evaluation, it is effectiulipe many-
core accelerators. In the recent TOP500 benchiarkich heavily rely on the dense matrix
multiplication, two systems with many-core accelerators were spotted on 2hdgi@kS5th (GPU).

In this paper, we report our implementation@fN?) force evaluation scheme on many-core
accelerators. Furthermore, we apply @{N?) scheme to an evaluation of the Feynman path inte-
gral arises in the particle physics. A direct computation of the Feynman patiréihis numerically
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unstable with double precision (DP) operations. because of its divengéure. So a solution to
this difficulty is that we compute the integral with quadruple precision (QP)atipms [b]. If we
implement QP operations with the emulation scheme[py [6] Bnd [7], which utilizesrii® for
emulation, one QP variable is expressed as a sum of two DP variables sméh@P addition
and multiplication requires 20 and 23 DP operations, respectively. Thisseipected that the
peak performance of QP operations is at least 20 times slower than its fohpence. Thus, the
evaluation of the integral is a highly time consuming task. We show that maeyacaelerators
are effective to evaluate a simple one-loop integral with the QP emulation scheme

2. Architecture of Many-core Accelerators
In this section, we briefly describe many-core accelerators we used makent work.

2.1 GPU: Cypress Architecture

The Cypress GPU from AMD/ATi is the company'’s latest GPU with many eoéisents for
general purpose computing on GPU (GPGPU). It has 1600 arithmetic oallsd a stream core),
each of which is capable of executing single precision floating-pointrifkejply-add. At the time
of writing, the fastest Cypress processor is running at 850 MHz dedsod peak performance of
1600x 2 x 850x 10° = 2.71 Tflops.

Moreover, these units are organized hierarchically as follows. At ored légher from the
stream cores, a five-way very long instruction word (VLIW) unit callethi@ad processor (TP)
that consists of four simple stream cores and one transcendental stoeam Therefore, one
Cypress processor has 320 TPs. The TP can execute either at raaghile-precision/integer
operations, four simple single-precision/integer operations with one &radental operation, or
double-precision operations by combinations of the four stream coremitAalled a SIMD en-
gine consists of 16 TPs. At the top level, there are 20 SIMD engines, teotenunit called an
ultra-threaded dispatch processor, and other units such as unitsafgrigiprocessing, memory
controllers and DMA engines. An external memory attached to the CypréssBsGDDR5 mem-
ory with a bus width of 256 bit. It has a data clock rate at 4800 MHz andifs a bandwidth of
153.6 GB sec’.

We program the Cypress GPU through an assembly like language callddténfediate
Language). The IL is like a virtual instruction set for GPU from AMD/ATi.itWIL, we have full
control of every VLIW instructions. A code written in IL is called a computeriadr

2.2 GRAPE-DR Architecture

GRAPE-DR (Greatly Reduced Array of Processor Elements with Datad®edliis a spe-
cially developed many-core accelerator for applications in Astronomyadtl®924 FP arithmetic
units. A half of the units are double precision (DP) addition units and anateesP multiplication
units. Logically, we program 512 add/mul units in SIMD-way to do usefldwations. Actually,
GRAPE-DR is designed to optimize to compute a force summation liké Hq.(1.1) anatibally
shown in Figurd]1 (se€][8] for detailed internal structure of GRAPE:D®th clock speed of 380
MHz, a performance of one GRAPE-DR chip is 195 GFLOPS in DP operatiod 390 GFLOPS
in SP operations, respectively. The GRAPE-DR is programmable butuligtgfrogrammable
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Figure1l: Schematic view of the GRAPE-DR system. It consists of twaspar host computer and GRAPE-
DR chip(s). GRAPE-DR chip has 512 processing elements (REE is a unit of computing components
in GRAPE-DR which has own local memory (LM) and arithmetidétsifDP add, SP mul and integer ALU).
Every 32 PE is grouped to constitute a broadcast block (BR) &ach BB unit has a memory component
(broadcast memory; BM) that is shared by all 32 PEs, namkREasimultaneously read a same data. When
we view this memory read operation from BB, it is a broadcéstaata from BM to all 32 PEs. Note in the
figure, we depict 1 BB unit that hosts 8 PEs.

unlike other many-core accelerators such Cell and GPUs. Its archéemtar memory system
is simplified to support only limited types of applications. Many-particle simulatisgch are
considered to be compute intensive, are very efficiently executed orPGHIR.

2.3 A Compute Model of Many-core Accelerator

After the introduction of new GPUs like Cypress, it turns out that the GRBIFES very sim-
ilar to such recent GPUs. In the present work, we treat GRAPE-DRCgpdess GPU are logically
same system as described below (see Fiure 1). Based on this computewedu@le developed
a special compiler system for GRAPE-DR and Cypress GPU. [$ee [@letailed description of
our compiler system.

Our logical many-core accelerator has far many FP arithmetic units workiSgMiD-way.
Each arithmetic unit has own local memory. Actually, the local memory cornelspto general
purpose registers on each TP in the Cypress and registers and LMloRPEan the GRAPE-DR,
respectively. Inthe GRAPE-DR, all PEs are connected to the broatdeasory that is shared by all
PEs. Main purpose of the broadcast memory is that all PEs can load thalataredficiently. The
Cypress has similar shared memory components but in the present work et dse the shared
memory components. Instead, we regard a read cache memory as repiaocéthe broadcast
memory. The cache memory on the Cypress works effectively like the tagathemory.
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for i = 0to N1
s[i] =0
for j =0to N1

sfi] +=f(x[i], x[j])

Figure 2: A simple nested loop to computer a general force calculation

3. O(N?) force summation on many-cor e acceler ators

In this section, we describe how we use many-core accelerators to competeeral force
summation. It is expressed with the following equation:

N

s:ZF(a,bi,cj,dj...), (3.1)

]

whereF is a function that evaluates a value from input varialaeh;, ¢j, ... ands is a summation
result. Ifinput variables;, bj, cj, ... are vector components of a position of a particle and mass of the
particle, this equation is reduced to gravity force equation in[E§.(1.1). Adsa,given quadrature,
we can do a numerical integration with this formulation by regardinky, ... as integration points
and functionF as integrand. Another trivial application is to compute a complicated functice fo
very large number of times. This typically arises in a Monte Carlo integratioersehin this case,
we do not take summation over variables.

Suppose we implement a program to compute the general force summation. (B EqThis
can be simplely calculated by a nested loop as shown in F[§ure 2 (a). To ma@shési loop on
many-core accelerators, we unroll the outer loop as shown in Fijuea®i@assign computations
of each inner loop fox[i] to processors on an accelerator. The loop unrolling is a standard
technique on general purpose CPUs to enhance compute density lmyngedequired memory
bandwidth and also by latency hiding for arithmetic units. If we unroll the dotgp by n ways,
the number of timex[j ] loaded is reduced by a factor of On a general purpose CPUis
limited to 4 - 8 at most due to a small number of registers (typicall§6 - 128 in DP words).
However, many-core accelerators we consider here have more tBaRPLarithmetic units and
each arithmetic unit has 32 - 128 registers. So we can regard an aiggnegaber of registers is
1000 - 5000. Therefore we can unroll the loop by roughly 200-50¢svaovided that a many-
core accelerator has memory component shared by all arithmetic units e nsamory. This
greatly reduced required memory bandwidth is the key to efficiently utilize neargraccelerators.
Specifically, in the example here| i ] is reused repeatedly whole time during the inner loop and
eachx[ j ] is used once during the inner loop but it is sharechlhygical processors. Actually, the
GRAPE-DR is designed to be optimized to this unrolling technique. In the caBRAPE-DR, all
X[ ] are stored on the broadcast memory (BM). The BM broadcastsxdgch in each iteration
for the inner loop.

With the Cypress GPU, it is best to utilize 4-vector SIMD unit as much as dedsibgaining
maximum performance. So one way to make 4-vector SIMD unit on each §pivto unroll the
inner loop of force calculation in 4 ways as shown in Figjire 4.
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for i = 0to N1 each 4
s[i] =s[i+l] = s[i+2] = s[i+3] =0
for j =0to N1
s[i] +=f(x[i], X[j])
s[i+1] += f(x[i+1], X[j])
s[i+2] += f(x[1+2], X[j])
s[i+3] += f(x[1+3], X[j])

Figure 3: Unrolli-loop in 4 ways. We assign computations of each inaep for different i to four different
processors on a many-core accelerator.

for i = 0to N1 each 4
s[i] = s[i+1l] = s[i+2] = s[i+3] =0
for j =0to N1 each 4
for k =0to 3

sfi ] += f(x[i ], x[j+k])
s[i+1] += f(x[i+1], X[j+K])
s[i+2] += f(x[i+2], X[j+k])
s[i+3] += f(x[i+3], X[j+k])

Figure 4: Unroll both i-loop and j-loop in 4 ways

4. Astronomical Application

We did an experiment to implement the force calculation loop[Ed.(1.1) with the tixeses
shown in Figurd]3 and 4 (s€feJ10] for details). Precisely, we have impleaieonventional equa-
tions expressed as

N N m
pi = p(xluxjamj) = ’
j:%;éi j:gj;éi (I —xj|2+€2)1/2
N N
m; (X — Xj)
f. = f(x.,xj,mj) J ,
| F%# F;#OK*MP+£%W2

4.1)

where p; and f, are potential and force for a particleandx;, m;, € are position of a particle,
the mass, and a parameter that prevents division by zero, respechivétye most inner loop, by
simultaneously evaluating functioqsand f, we require 22 arithmetic operations, which include
one square root and one division, to compute an interaction betweeneiaatid j. Since previous
authors starting from[J}1] used a conventional operational courgvaluation off; and p;, we
also adopt the conventional counts of 38 throughout the paper. Imefiguwe plot a computing
speed of our optimized IL code for computing Eq}4.1) as a functioN.ofWe have obtained
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Figure5: A performance of ouD(N?) force evaluation scheme on various GPUs. RV770 is an oldrgene
tion GPU architecture with 160 TPs.

~ 2600 GFLOPS aN > 100000 on Cypress GPU running at 850 MHz. As far as we know, the
performance we obtained is fastest ever with one GPU chip.

5. One-loop Integral

A simple example of such integral is an one-loop integral expressed as

1 1—-x 1-x-y
I :/ dx/ dy/ dzF(x,y,2),
0 0 0
F(xy,2) = D(x.y,2) 2

D = —xys—tz(1—-Xx—y—2)+ (x+Yy)A?

+(1-x—y-2)(1-x-y)m
+2(1—x—y)m?. (5.1)

Here,s andt are parameters anmts, andm; are physical constants. Ardis a fictitious photon
mass that is supposed to be zero so that accurate evaluation of this imgegglally very hard
due to its divergent naturf] [5]. If|[5], they have reported that a coatioim of a multi-dimensional
integration scheme and an extrapolation schemg [ifl] is necessary to tackle to this problem.

If we adopt the double exponential integral scheme, this integration iceddio the three
nested summation, which requires27N? operations wher&l is a number of integration points
in one direction. Practically, givemandt, we need to evaluate the integral repeatedly~a20
times due to the extrapolation scheme. Accordingly, Wth- 1024, a total number of required
QP operations for one evaluation-s6 x 10'1. Furthermore, we need to evaluates the integral
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| Add | Mul | Div |
Cypress 21 | 25 | 53
GRAPE-DR| 21 | 41 | 199

Table 1. A number of required DP operations to emulate a given QP dmal@an Cypress GPU and
GRAPE-DR.

LMEM xXx, Yy, cnt4;

BVEM x30_1, gw30;

RVEM res;

CONST tt, randa, fne, fnf, s, one;

zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz+(one-xx-yy-2zz)+(xx+yy)*randax*2 +
(one-xx-yy-zz)x(one-xx-yy)*f mex+2+zz+(one- xx-yy) =f nf *2;

res += gw30/ d+**2;

Figure 6: Source code for our compiler system to compute the integ@).

with different combination o andt. The number of combination is as large-ad(®. And there
are many other integrals, each of which corresponds to a specific conditigood news is that
the QP emulation scheme is expected to be efficient on many-core accealelatdo its intrinsic
nature. That is one QP addition requires 4 DP variables as input andtese& DP operations to
obtain 2 DP variables. In other words, the QP emulation scheme is also quitesoimensive in
addition to many-particle simulations.

We have developed the QP emulation library for both the Cypress GPU addPERR.
Table[]l shows a number of DP operations to emulate each DD arithmetic opgratid@ypress
GPU and GRAPE-DR. In terms of the number of DP operation counts, thee€yGPU is more
efficient than GRAPE-DR. We apply o@(N?) force evaluation scheme to compute this nested
summation. Giverx andy, we compute the inner-most summation of Eg](5.1) with our scheme.
We compute a several hundred combinationg ahdy in parallel with a many-core accelerator.
With our QP emulation library, the Cypress GPU computes 320 combinatiotenafy in parallel
for instance.

The definition of the integrand in the original Fortran code is written as 2 lifag. source
code for our compiler system to computer Eq](5.1) is written as 9 lines includifigitibns of
variables that is denoted &4EM BMEMand, RVEM (Figure[p). Each of these lines defines input
LM variables, BM variables, and output LM variables. From this inputresewode, our compiler
generates assembly code for Cypress GPU and GRAPE-DR. Thesmare contains 26 add/mul
operations and 1 div operation. For Cypress GPU, the generatadldgdanguage contains 319
VLIW instructions, which includes instruction related to data load and a loepadipn. Since an
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N =256 | N=512| N=1024| N =2048 clock |

GRAPE-DR| 0.21 1.21 7.83 55.1 380
Cypress 0.05 0.29 1.94 14.2 850
Core i7 7.39 59.0 472 — 2670

Table 2. The measured elapsed time to compute the integral irﬁm.\(\ﬁth different integration points.
The last column indicates clock speed of processors in MHz.

expected number of VLIW instructions for 27 QP operations is roughly 2B1+ 25)/2+53 =
651 operations, the Cypress VLIW architecture is very effective to theQulation scheme. For
GRAPE-DR, the generated assembly language contains 1226 instruettdol,includes 40 nop
operations. In other words, a percentage of time during which arithmetic angitstalled is as
small as 3 %.

In Table[2, we present the elapsed time to compute the integral ih Fq.(5.1) WithedifN.
We show the elapsed time for Cypress GPU running at 850 MHz and GRM®ERip running
at 380 MHz. Additionally, we present the elapsed time with a conventional @Bte this is a
result with single core of Core i7 running 2.67 GHz). Depending on thedikg the measured
computing speeds are 13.0, 15.5, and 16.9 QD-GFLOPS fob12, 1024, and 2048, respectively,
for Cypress GPU. For comparison, in caseNof= 1024, we have obtained 3.83 QD-GFLOPS
with GRAPE-DR and 63.7 QD-MFLOPS with Core i7 CPU. Here, we assume thertomber
of QD operations is 28° (one division is equivalent to two add/mul operations). The Cypress
GPU shows impressive performance gaind00 times) compared to the conventional CPU. The
GRAPE-DR also shows good performance gain6Q times). Additional advantage of GRAPE-
DR is its low power consumption. Nominal power consumption of three architecia~ 200
W for Cypress GPUy 60 W for GRAPE-DR, and- 130/4 ~ 33 W for Core i7 CPU. So, both
many-core accelerators show roughly similar performance per watt witpdhtisular problem.

6. Conclusion

In this paper, we introduce a newly developed compiler system for higbrpgnce com-
puting using many-core accelerators. Accelerators are effectivpanifie problems that share a
certain pattern of calculations. Specifically, they are suited to calculatioichwahow repeated
reuse of data, and a calculation with high compute density.

Our novel programming model for such calculations is simple but sufficiemhptement a
several important compute intensive applications such as many-particle tiamsiland the double
exponential integral scheme. More precisely, our compiler systematesdrighly efficient codes
for many-core accelerators Cypress GPU and GRAPE-DR. We haameb~ 2.6 TFLOPS with
O(N?) force evaluation for application in astronomy. Also, we have shown thaemulation
scheme is well suited to the many-core accelerators and very powerrdffidigh Cypress GPU,
we have obtained 15 QD-GFLOPS that is more than 200 times faster than a conventional CPU
with single thread. Combined with the scheme proposef] in [5], our compilersys effective to
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utilize a desktop computer equipped with GPU/GRAPE-DR for computing mowsgrentegral
value.

This work was supported in part by the Grant-in-Aid of the Ministry of Eatian (No.

20105005 and 21244020).
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