
A Compiler for High Performance Computing With
Many-Core Accelerators

Naohito Nakasato 1 and Jun Makino 2

1 University of Aizu, Department of Computer Science and Engineering
nakasato@u-aizu.ac.jp

2 National Astronomical Observatory of Japan
makino@cfca.jp

Abstract—We introduce a newly developed compiler for high
performance computing using many-core accelerators. A high
peak performance of such accelerators attracts researchers who
are always demanding faster computers. However, it is difficult to
create an efficient implementation of an existing serial program
for such accelerators even in the case of massively parallel
problems. While existing parallel programming tools force us
to program every details of an implementation from loop-level
parallelism to 4-vector SIMD operations, our novel approach is
that given a compute intensive problem expressed as a nested
loop, the compiler only ask us to define a compute kernel inside
the inner-most loop. We observe that input variables appeared
in the kernel is classified into two types; invariant during the
loop and variables updated in each iteration. The compiler let
us to specify either type of the inputs so as it pick a predefined
optimal way to process them. The compiler successfully generates
the fastest code ever for many-particle simulations with the
performance of 500 GFLOPS (single precision) on RV770 GPU.
Another successful application is the evaluation of a multi-
dimensional integral. It runs at a speed of 5 - 7 GFLOPS
(quadruple precision) on both GRAPE-DR and GPU.

I. INTRODUCTION

A. Programming Many-Core Accelerators

The rise of many-core accelerators such as Cell, GPU, and
commodity multicore CPU with SIMD units opens a new
way of high performance computing but also poses a serious
problem of how to program highly parallel floating-point (FP)
units on these accelerators.

Roughly speaking, until recently there have been two con-
ceptual levels of parallel programming. (1) vector processing
and (2) distributed parallel processing. In 70’s - mid 80’s, we
had to modify our serial programs into the form suitable for
vector processing to get the highest performance. At that time,
an important programming optimization was to vectorize loops
with user directives. After the introduction of massively paral-
lel processor (MPP) in late 80’s and commodity PC cluster in
mid 90’s, we were forced to use a new programming concept
that is the explicit parallel programming with message passing.
A important question at that time was how to write scalable
parallel programs which worked for 10 - 1000 processors with
explicit message passing. By now, the number of cores in
current big MPPs have gone beyond more than 100,000 (the
Jaguar system at Oak Ridge National Laboratory has 150,152

cores). We now face the same problem for 10,000 - 100,000
processors.

Many-core accelerators add new levels to the parallel pro-
gramming. One is a short vector processing and another is
MIMD processing for 100 - 1000 FP units.

The short vector processing is actually 4-vector SIMD op-
erations in Cell, GPUs, and SSE. In these processors, logically
all arithmetic operations are performed as 4-vector operations
in single precision (SP). To obtain a good performance, we
need to modify our programs so that they do computations in
4-vectors. This vector processing is quite different from tradi-
tional vector processing because usually hand optimization in
assembly language is necessary.

The combination of the short vector and MIMD processing
requires us to rethink/restructure completely existing numeri-
cal algorithms if we want to utilize many-core accelerators.

To make the problem even worse, each accelerators have
their own programming environment with slight differences in
details. For example, from the point of view of their architec-
ture, we can logically consider G80/G90/GT200b GPU from
Nvidia and RV770 GPU from AMD/ATi to be very similar.
They both consist of a sea of FP arithmetic units, which
are connected with high speed memory, running in MIMD
way. However, each company offers its own programming
environment for general purpose GPU computing (GPGPU).
While OpenCL or another language/library might offer a
unification of the new two-level parallel programming in the
near future, we expect that an unified approach is not always a
right answer. In this paper, we introduce an alternative way of
programming many-core accelerators. Specifically, we present
a programming model for accelerators and parallel compiler
based on it.

An important questions here is what types of practical ap-
plications are efficient on many-core accelerators? Our simple
answer is a problem that requires high compute density. Even
in Cell and GPUs with the external memory bandwidth at ∼
100 GB s−1, the memory-wall problem is quite severe since
the raw performance of these processors (∼ a several 100
GFLOPS) is very high compared to the memory bandwidth.
Applications which allow repeated reuse of data, or appli-
cations with high compute density are the most efficient on
many-core accelerators (and also on general purpose CPUs).

A well-known example of this type of applications is a many-
particle simulation.

B. A Successful Accelerator for Many-particle Simulations

In astronomical many-particle simulations, the most time
consuming part is the evaluation of mutual force between
particles:

f i =
N∑

j=1

mj(xi − xj)
(|xi − xj |2 + ε2)3/2

, (1)

where xi, mi, ε are position of a particle, the mass, and a
parameter that prevents division by zero, respectively. Given a
number of particles N , this force evaluation requires O(N2)
complexity but other part of the simulations, such as orbit
integration, requires only O(N) complexity. It was shown that
one can do the evaluation of mutual force very efficiently
with an accelerator device called GRAPE (GRAvity piPE)
[1], [2]. This O(N2) direct summation force evaluation is
fundamental to the modeling of dense star clusters that are
collisional system. Note that there is an O(N logN) method
[3] for collision-less system like galaxy and cosmological
simulations but the method is not applicable to star clusters.

The GRAPE system is widely used in astronomical commu-
nity. It is a specially designed computing system to calculate
Newtonian gravity between particles expressed in Eq.(1). In
GRAPE system, all calculations except computation of Eq.(1)
are done on a host computer that controls GRAPE system.
The host computer sends xi and mi to GRAPE and receives
results f i. In other words, only the most computing intensive
part of many-body simulations is computed on the specially
developed component. Inside the GRAPE system, Eq.(1) is
computed by force computing pipelines, each of which has
more than 50 arithmetic units. The most recent GRAPE-6 chip
has six such force computing pipelines. Thus, in total, one
GRAPE-6 has more than 300 arithmetic units and provides 30
GFLOPS with only 13 W. This is still very efficient in spite
of a fact that GRAPE-6 was developed 10 years ago. A recent
commodity 4-core CPU (say, Intel Core i7) that consumes
100W provides at most ∼ 30 GFLOPS [4].

C. A Many-Core Accelerator: GRAPE-DR

In a new GRAPE system after GRAPE-6, instead of de-
veloping enhanced version of GRAPE-6 chip, GRAPE-DR
(Greatly Reduced Array of Processor Elements with Data
Reduction) chip, which is not fixed function for gravity but
programmable, has been designed in 2005 followed by system
construction in 2006-2009. At 2009 after the introduction of
new GPUs designed for GPGPU, it turns out that GRAPE-
DR is very similar to the recent GPUs. Like GPUs, it is also a
many-core accelerator with 1024 FP arithmetic units. A half of
the units are double precision (DP) addition units and another
are SP multiplication units. Logically, one can program 512
add/mul units in SIMD way to do useful calculations (see
[5] for detailed internal structure of GRAPE-DR). With clock
speed of 380 MHz, a performance of one GRAPE-DR chip

is 195 GFLOPS in DP operations and 390 GFLOPS in SP
operations, respectively.

The GRAPE-DR system is programmable but not fully
programmable unlike other many-core accelerators such Cell
and GPUs. Its architecture and memory system is simplified
to support only limited types of applications. Many-particle
simulations, which are considered to be compute intensive, are
very efficiently executed on GRAPE-DR. Our programming
model is originally designed for this type of computation.
However, we found that the same programming model is
useful for an evaluation of a multi-dimensional integral that
has divergent nature.

D. A Difficult Problem: The Loop Integral

An evaluation of the Feynman path integral I arises in the
particle physics. A simple example of such integral is an one-
loop integral expressed as

I =
∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dzF (x, y, z),

F (x, y, z) = D(x, y, z)−2

D = −xys − tz(1 − x − y − z) + (x + y)λ2

+(1 − x − y − z)(1 − x − y)m2
e

+z(1 − x − y)m2
f . (2)

Here, s and t are parameters and me, and mf are physical
constants. And λ is a fictitious photon mass that is supposed
to be zero so that accurate evaluation of this integral is
actually very hard due to its divergent nature [6]. They have
reported that a combination of a multi-dimensional integration
scheme and an extrapolation scheme on λ [7] along with
at least quadruple precision (QP) operations is necessary to
tackle to this problem. If we adopt the double exponential
integral scheme, this integration is reduced to the three nested
summation loop, which requires ∼ 27N3 operations where N
is a number of integration points in one direction. Practically,
given s and t, we need to evaluate the integral repeatedly for
∼ 20 times due to the extrapolation scheme. Accordingly, with
N = 1024, a total number of required QP operations for one
evaluation is ∼ 6 × 1011. Furthermore, we need to evaluates
the integral with different combination of s and t. The number
of combination is as large as ∼ 106. And there are many other
integrals, each of which corresponds to a specific condition.

If we implement QP operations with the scheme by [8]
and [9], which utilizes DP units for emulation, a QP variable
is expressed as a sum of two DP variables so that one QP
addition and multiplication requires 20 and 23 DP operations,
respectively. Thus, it is expected that the peak performance
of QP operations is at least 20 times slower than its DP
performance. Thus, the evaluation of the one-loop integral is a
highly time consuming task when we do it as a serial program.

A good news is that the QP emulation scheme is expected
to be efficient on many-core accelerators due to its intrinsic
nature. That is one QP addition requires 4 DP variables as
input and executes 20 DP operations to obtain 2 DP variables.

In other words, the QP emulation scheme is also quite compute
intensive in addition to many-particle simulations.

E. Plan of the Paper

Organization of our paper is as follows. In section 2, we
summarize performance metric of commodity general purpose
CPU and many-core accelerators with a special emphasis
on the dependence of performance on numerical precision.
All accelerators we consider are very good at SP operations
but their DP performance is disappointing. Detailed analysis
reveals that their QP performance again is remarkable. Section
3 is devoted to the explanation of our computing model. In
section 4, we describe our compiler for many-core accelera-
tors. Finally, we present performance results on GRAPE-DR
and GPU obtained with our compiler in section 5 followed by
our conclusion in section 6.

II. PERFORMANCE COMPARISON OF SP, DP, QP
OPERATIONS ON MANY-CORE ACCELERATORS

In this section, we briefly summarize performance charac-
teristics of several many-core accelerators. Here, we make
a special emphasis on the dependence of performance on
the numerical precision. As a basis for comparison, we start
the discussion with the performance of commodity general
purpose CPUs.

We summarize the performance characteristic for a general
purpose CPU and many-core accelerators in Table I.

A. Recent Multicore CPUs

In the last a few years, the performance of commodity
general purpose CPUs are improving mainly through the
increase of the number of cores on a chip. These CPUs are
used not only for personal use but also as work horse of HPC
clusters. The latest example of such CPUs is Intel Core i7
(Nehalem architecture). It has four cores running at 2.67 -
3.2 GHz and each core is capable of running two threads
simultaneously. One can utilize each core for up to 4 SP
operations in one cycle while the DP performance is one half
of the SP performance. Accordingly, one Core i7 chip at 3.2
GHz offers the peak performances of 51.2 (SP) and 25.6 (DP)
GFLOPS.

As already noted, theoretically, the estimated QP perfor-
mance on a processor is no more than 5 % of its DP
performance. We wrote routines in C language that do QP
add and mul operations and have done a naive benchmark
test. In this test, we have measured performance and latency
of each operation on Core i7 processor running at 2.67 GHz.
We have compiled the test program using gcc version 4.1.2
along with “-O2” optimization option. It turns out that the
performance of QP add/mul is ∼ 73/58 MFLOPS and QP add
and mul operations require 36 and 46 clocks, respectively. We
have inspected generated object codes and found that (a) add
and mul QP routines use 34 and 37 instructions, respectively,
(b) both routines use SSE (addsd/subsd/mulsd) instructions for
DP operations, (c) the allocated number of registers in add and
mul routines is 9 and 8, respectively. Additional instructions

for both cases are mainly movsd instructions that move data
between SSE registers. Note we used only one core and did
not utilize SSE2 feature in this test so the expected peak
QP performance is 2.67/20 ∼ 134 MFLOPS provided that
each routine requires 20 DP operations. However, our test
reveals that both operations require roughly two times longer
latency than such ideal case. It seems that the main factor that
causes the lower QP performance is the pipeline stall due to
dependent operations. Precisely, both pipeline latency of FP
operations (addsd/mulsd requires 3/5 clocks) and additional
movsd instructions (latency 1 clock) affect total latency of QP
routines.

B. Many-Core Accelerators

Many-core accelerators that we consider share same na-
ture. Their SP performance is superior to DP performance.
However, the ratio between DP and SP performance depends
on architecture and implementation of a processor. It spreads
from 0.5 for PowerXCell 8i and GRAPE-DR to 0.1 for Cell
Broadband Engine, GT200b, and multiply on RV770. From
these numbers, these accelerators can be divided into two
groups. PowerXCell 8i, which is an variant of Cell Broadband
Engine with the DP performance enhancement, and GRAPE-
DR have been designed and developed for HPC applications
while others with the lower ratio are for interactive processing
of graphics. From a view point of architecture, we see that
GRAPE-DR and GPUs are similar. They have more than 200
arithmetic units with relatively low clock cycle. On the other
hand, both Cell products run at higher clock cycle with less
than 50 units. We note that an important difference between
GRAPE-DR and others is that external memory bandwidth is
rather small (∼ 4 GB s−1) compared to that of GPUs and Cells
(75 - 100 GB s−1). GRAPE-DR is designed to do scientific
applications that do not require high memory bandwidth.

We can estimate the QP performance of those accelerators
using a method similar to the previous section. It is also
true that at most an estimated QP performance is 5 % of
their DP performance. Also, a further performance decline is
expected due to the pipeline stall but it is quite difficult to
estimate without a description of detailed architecture except
for GRAPE-DR. For GRAPE-DR, we have implemented QP
emulation codes as shown in later sections. Since GRAPE-DR
executes FP operations completely in-order, we can calculate
the fraction of time during which arithmetic units stall. In a
real application with QP operations by GRAPE-DR presented
in 4.3, the fraction is not significant. We estimate the peak
performance of QP performance on GRAPE-DR is ∼ 6.7
GFLOPS, which is 15 times faster than the estimated peak
performance of Core i7. Also, the estimated peak performance
of QP operations on RV770 is ∼ 6.5 GFLOPS.

III. COMPUTING MODEL

Based on experiences with GRAPE systems, we developed
a simple computing model for GRAPE-DR.

SP DP QP NSP
unit NDP

unit clock note
CPU 51 26 0.43 16 8 3.2 Core i7 SSE2/3
Cell1 200 20 24 6 3.2 Cell Broadband Engine
Cell2 230 109 32 16 3.2 PowerXCell 8i
GPU1 933 78 240 28 1.5 GT200b
GPU2 1200 240 6.5 800 128 0.75 RV770 (DP add)

GRAPE-DR 390 195 6.7 512 256 0.38 SING

TABLE I
SP, DP, QP PERFORMANCE AND CHARACTERISTICS OF A GENERAL PURPOSE CPU AND MANY-CORE ACCELERATORS ARE SUMMARIZED. A UNIT OF

FLOATING POINT SPEED FOR SP, DP, QP ARE GFLOPS. QP SPEED SHOWN IN THE FOURTH COLUMN FOR CPU IS A RAW ESTIMATED PEAK VALUE BUT
THE NUMBERS FOR GRAPE-DR AND RV770 ARE AN ESTIMATED PEAK SPEED EXPLAINED IN SECTION 2.2. THE FIFTH AND SIXTH COLUMNS SHOW A

NUMBER OF SP AND DP ARITHMETIC UNITS, RESPECTIVELY. THE SEVENTH COLUMN INDICATES THE CLOCK CYCLE IN GHZ.

A. Massively Parallel Force Calculation

A general force calculation loop is expressed with the
following equation:

si =
N∑
j

F (ai, bi, cj , dj ...), (3)

where F is a function that evaluates a value from input
variables ai, bi, cj , ... and si is a summation result. If input
variables ai, bi, cj , ... are vector components of a position of
a particle and mass of the particle, this equation is reduced to
gravity force equation in Eq.(1). Also, for a given quadrature,
we can do a numerical integration with this formulation by
regarding ai, bi, ... as integration points and function F as inte-
grand. Another trivial application is to compute a complicated
function for a very large number of times. This typically arises
in a Monte Carlo integration scheme. In this case, we do not
take summation over variables.

B. A Problem of Programming the Force Calculation

At the first sight, one might think that such parallel problem
is easily implemented on any parallel computers. That is not
really true. In our experience of programming on various
parallel computers, even for a simplest force calculation loop
like Eq.(1), we always need to explicitly specify which part
of our serial code can be parallelized to a compiler with
detailed tweaks if we try to obtain a performance close to
the peak speed. Two insights on programming of parallel
problems we obtained so far are (1) there is no automagical
way to do it and (2) given a parallel computer, there are best
programming practises how to organize data and loop to get
the best performance.

We believe the problem of existing environ-
ment/softwares/languages for parallel programming is
the wrong level of abstraction. Most of softwares fall between
following two extremes. At one extreme, the abstraction is
rather high level such that loop-level parallelization adopted
in compilers for vector computes and OpenMP. In another
extreme, the abstraction is so low level such that we need to
specify every 4-vector operations in short vector processing,
e.g. assembly programming. For GPUs, both Nvidia and
AMD/ATi offer programming environments (C for CUDA
and Brook+) that fuse these two extremes like Chimera.
A critical lack in existing parallel programming system in

regarding our purpose of implementing a force calculation
like Eq.(3) on many-core accelerators is that it seems usage
pattern of data is not considered at all.

C. Our Solution

Suppose we implement a program to compute a general
force calculation loop like Eq.(3). This can be simplely calcu-
lated by a nested loop as shown in Figure 1 (a). To map this
nested loop on many-core accelerators, we unroll the outer
loop as shown in Figure 2 (b) and assign computations of
each inner loop for x[i] to processors on an accelerator.

The loop unrolling is a standard technique on general pur-
pose CPUs to enhance compute density by reducing required
memory bandwidth and also by latency hiding for arithmetic
units. If we unroll the outer loop by n ways, the number
of times x[j] loaded is reduced by a factor of n. On a
general purpose CPU, n is limited to 4 - 8 at most due to
a small number of registers (typically ∼ 16 - 128 in DP
words). However, many-core accelerators we consider here
have more than 100 FP arithmetic units and each arithmetic
unit has 32 - 128 registers. So we can regard an aggregate
number of registers is 1000 - 5000. Therefore we can unroll
the loop by roughly 200-500 ways provided that a many-core
accelerator has memory component shared by all arithmetic
units. This greatly reduced required memory bandwidth is the
key to efficiently utilize many-core accelerators. Specifically,
in the example here, x[i] is reused repeatedly whole time
during the inner loop and each x[j] is used once during the
inner loop but it is shared by n logical processors.

Actually, GRAPE-DR is designed to optimize to this un-
rolling technique as schematically shown in Figure 4. In the
case of GRAPE-DR, all x[] are stored on the broadcast mem-
ory (BM). The BM broadcasts each x[j] in each iteration
for j. This structure is the most efficient to do this type of
computations.

In principle, an ideal compiler should be aware of the
differences of data reuse. Practically, we let a user to specify a
type of variables and our compiler automatically select the best
practices on a given platform. In our compiler, we put details
of how to organize/transfer/manupilate data on an accelerator
and precise usage of a sea of FP units behind the scene so that
we only need to worry about data sending to/receiving from
the device.

for i = 0 to N-1
s[i] = 0
for j = 0 to N-1

s[i] += f(x[i], x[j])

Fig. 1. A simple nested loop to computer a general force calculation.

for i = 0 to N-1 each 4
s[i] = s[i+1] = s[i+2] = s[i+3] = 0
for j = 0 to N-1

s[i] += f(x[i], x[j])
s[i+1] += f(x[i+1], x[j])
s[i+2] += f(x[i+2], x[j])
s[i+3] += f(x[i+3], x[j])

Fig. 2. Unroll i-loop in 4 ways

IV. A COMPILER FOR MANY-CORE ACCELERATORS

In this section, we describe the implementation of our
compiler and present a brief summary of the syntax of a
domain specific language we propose for describing compute
kernels. At the end of this section, we show how our compiler
is effective on many-core accelerators GRAPE-DR and GPU
RV770.

A. Programming Model

In our programming model, a user need to write a separate
compute kernel in our domain specific language. It is a user’s
task to extract a compute intensive loop in an own numerical
code for off-loading to many-core accelerators. Also the user
needs to modify the corresponding part of the original code to
add calls to a several interface routines that control and handle
data transfer to/from many-core accelerators. We think this
explicit modification of the existing code is better approach in
concerning performance because the user can easily optimize
a way of data transfer. How data is transfered between a host
computer and many-core accelerators is highly depending on
a given problem.

In our language, we explicitly specify input (variables that
are in the right hand side of Eq.(3)) and operations between
those variables (precise definition of function F) to obtain

for i = 0 to N-1 each 4
s[i] = s[i+1] = s[i+2] = s[i+3] = 0
for j = 0 to N-1 each 4

for k = 0 to 3
s[i] += f(x[i], x[j+k])
s[i+1] += f(x[i+1], x[j+k])
s[i+2] += f(x[i+2], x[j+k])
s[i+3] += f(x[i+3], x[j+k])

Fig. 3. Unroll both i-loop and j-loop in 4 ways

Fig. 4. Schematic view of the GRAPE-DR system. It consists of two parts: a
host computer and GRAPE-DR chip(s). GRAPE-DR chip has 512 processing
elements (PE). A PE is a unit of computing components in GRAPE-DR which
has own local memory (LM) and arithmetic units (DP add, SP mul and integer
ALU). Every 32 PE is grouped to constitute a broadcast block (BB) unit. Each
BB unit has a memory component (broadcast memory; BM) that is shared by
all 32 PEs, namely, all PE simultaneously read a same data. When we view
this memory read operation from BB, it is a broadcast of a data from BM to
all 32 PEs. Note in the figure, we depict 1 BB unit that hosts 8 PEs.

output results (variables that are in the left hand side of Eq.(3)).
Precisely, we divide the inputs into two types. One type is a
local variable that is invariant during the inner loop. Another
type is a broadcast variable that is different in each iteration.
In Eq.(1), the local variables are components of a position
vector xi and ε and the broadcast variables are components
of a position vector xj . The names of two types of inputs are
originated from architecture of GRAPE-DR.

This language is easy to map to any many-core accelerators
although it is originally designed to obtain a good performance
for GRAPE-DR. As shown later, our compiler works very well
for GPUs. We expect that our proposed programming model
also shows good performance on a general purpose multicore
CPU and new architectures such as Intel Larrabee.

B. Implementation

Our compiler consists of three stages; (a) frontend, (b)
optimization on an internal representation and (c) backends
that generate a target code.

In our system, a user explicitly specify input/output vari-
ables and arithmetic operations (hereafter it is called a compute
kernel) on input variables. A main functions of the frontend is
to parse the input source code and generate the corresponding
abstract syntax tree (AST), and then to translate the AST
into an internal presentation. At the same time, semantic
information of variables is stored separately.

As the internal representation, we employed Low Level
Virtual Machine (LLVM) [10] that is an open source com-
piler infrastructure actively developed. LLVM defines RISC-
like instruction set (LLVM language) as a low-level code
representation and offers various optimization modules on the

LLVM language. Moreover, it supports target code generation
modules (both static and Just-In-Time code generators), C &
C++ frontend, and utility functions for compiler development.
We implemented our parser as a frontend to the LLVM infras-
tructure so that the input arithmetic operations and function
definitions are translated into the LLVM language.

LLVM enable us to easily do following two complicated
tasks. One is to do a several straight-forward optimizations that
include constant propagation, common expression elimination,
unrolling of loops, and inlining of functions. Another more
important task is to employ the static code generator for x86
architecture to generate a verification object file. An example
usage of the verification object file is as follows. Suppose
we try to implement a part of our own program with our
compiler, we first extract that part and write the input source to
our compiler. After processing, the frontend and optimization
module of the compiler generate the corresponding object files
in both LLVM language and x86 machine language. Then one
can replace the part in the original program with a call to the
the generated x86 object file and test whether desirable results
are obtained. This step verifies that (1) the input source code
is correct and (2) the frontend and optimization passes work
correctly.

Finally, the generated object file in LLVM language is
converted to a target code at backends of the compiler. Since
the generated object file is already optimized, backends simply
translate each instruction into the corresponding instruction of
the target. A unique feature of our compiler is that one can
specify a target many-core accelerator and numerical precision
(namely SP, DP and QP) as a compile option. The current
version of the compiler supports following backends: SP, DP
and QP for GRAPE-DR, SP, DP and QP for RV770.

In addition, we partially support mixed precision operations.
This feature is useful when we need high precision operations
only in a part of a whole calculation. For instance, in the
gravity force equation Eq.(1), a calculation of a relative vector
between xi and xj is critical in terms of numerical accuracy.
Given a pair of particles that are very close each other, the
calculation involves possible a loss of trailing digits. A way
to handle the problem, is that we use QP operations in the
calculation of relative vectors and then convert the results
into DP variables and we use DP operations in the remaining
calculations. This method can greatly reduce a total number
of operations.

C. Syntax of Our Language

Here, we present an example source code and describe how
it works. Suppose we compute the following integral with the
Simpson quadrature.

S =
∫ 1

0

√
1 − x2dx =

π

4
. (4)

The corresponding source code is shown in Figure 5. The code
consists of three parts; the definition of input/output variables
(line 1 - 3), the definition of arithmetic operations (line 5 -
11), and the definition of functions (line 13-14 and 17-19).

We specify the types of variables with a line starting with
LMEM, BMEM and, RMEM, each of which defines input LM
variables, BM variables, and output LM variables. Lines 5
- 11 represents the compute kernel of the code. One can use
temporary variable as necessary without definitions. Functions
are defined as a block starting with function. A return value
of a function is a value in a last expression. Here, functions
sqrt and integrand are user defined functions. On the
other hand, the function rsqrt is a system function that
computes the inverse of the square root.

An accumulation operation += is special and only valid for
output LM variables. This operation implies that a compute
kernel is processed as the iteration of inner-loop so that the
output LM variable accumulate general force computed from
input LM variables and BM variables. Every iteration, BM
variables are properly updated. This accumulation mode is
used for implementing the force calculating loop like Eq.(1).
The sample source code is shown in Figure 6. As a result,
in the example shown in Figure 5, we can not use operation
+= to accumulate the Simpson quadrature in the loop block
defined in lines 7 - 10. Currently, a loop block only accepts
fixed number of iterations so that the loop block is completely
unrolled. Finally, the result of numerical integration are stored
in the output LM variable result at line 11.

For each type of variables, we prepare corresponding inter-
face routines. Specifically, we have routines that write input
data to LMEM variables and read output data from RMEM
variables and so on. For simplicity, each variables in any type
is indexed in order of appearance in the compute kernel. In the
source code shown in Figure 5, LMEM variables a and b are
indexed 0 and 1, respectively and RMEM variable result
is indexed 0. The index is used to specify a variable when
we use the I/O routines along with other parameters such as
number of data etc. Also, we prepare a few routines to control
execution of the code on many-core accelerators.

D. Backends

After the processing at the frontend and optimization stages,
a sequence of instruction in LLVM language are generated.
At this point, the instructions only consist of basic arithmetic
operations (addition, subtraction and multiply) and a few
system functions (division and inverse of square root). A task
of a backend is to translate instructions in LLVM language into
a target code In both GRAPE-DR and RV770 backend, each
LLVM instruction is implicitly converted to a corresponding
4-vector SIMD instruction. This implicit treatment is helpful
for a user since the user does not have to describe every detail
of SIMD operations.

1) GRAPE-DR: First, we introduce important characteris-
tics of GRAPE-DR relevant to target code generation:

• It has 512 processor elements (PE).
• Each PE has a DP addition unit, a SP multiply unit and

an integer arithmetic unit.
• FP units work as 4-vector SIMD operation
• Each PE has two-read/one-write register file (32 words

in DP), one-read/one-write local memory (256 words in

1 LMEM a, b;
2 BMEM dx;
3 RMEM result;
4
5 sum = 0.5*integrand(a) + 0.5*integrand(b);
6 x = a;
7 for(i, 1, 99) {
8 x = x + dx;
9 sum = sum + integrand(x);

10 }
11 result = sum*dx;
12
13 function sqrt(x) {
14 res = x*rsqrt(x);
15 }
16
17 function integrand(x) {
18 res = sqrt(1 - x**2);
19 }

Fig. 5. A source code for the numerical integration Eq.(4). The numbers at
the beginning of each line indicate the line number.

LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;

dx = xj - xi;
dy = yj - yi;
dz = zj - zi;

r1i = rsqrt(dx**2 + dy**2 + dz**2 + e2);
af = mj*r1i**3;

ax += af*dx;
ay += af*dy;
az += af*dz;

Fig. 6. A source code for the force calculation loop Eq.(1)

DP), and a temporary register.
• A write to the temporary register is also connected to a

shortcut path for using the value at the next instructions.
• All instructions are executed in-order.

The backend for GRAPE-DR generates an assembly code for
GRAPE-DR assembler. Thus, a separate invocation of the
assembler with the generated assembly code is required to
obtain machine code for GRAPE-DR hardware.

If the specified precision option is SP or DP, the backend
directly translates simple arithmetic instructions (add, sub,
mul) with corresponding GRAPE-DR instructions. Division
(div) is treated separately as a combination of a reciprocal
operation followed by a multiplication. Another backend’s task
is the calculation of living period of variables and register
allocation. Our allocation strategy is simple. If living period
is one, we assign the temporary register, and otherwise we

assign register file as much as possible and if the register
spills, we assign the local memory to remaining variable. At
the final stage of the backend, it inserts idle (nop) operations
to accommodate memory access coordination.

Generation of QP code for GRAPE-DR is somewhat dif-
ferent. Since QP arithmetic operations are emulated using DP
operations, each basic operation is replaced with a sequence of
the emulation code. Our QP emulation code for GRAPE-DR
requires 21, 41 and 199 DP operations for QP add/sub, QP
mul, and QP div operations, respectively. Note since GRAPE-
DR only support SP multiply, the QP mul emulation code
requires additional steps compared to an optimal sequence
with DP multiply. Accordingly, the backend for GRAPE-DR
QP code replaces four basic instructions with a corresponding
code sequence. In QP code generation, we assign the local
memory to all variables. Registers are reserved as temporary
variables for QP emulations.

In either cases, the backend together with the assembler gen-
erates a skeleton code to be used with application programs.
The skeleton code consists of API calls to initialize, send data
to, execute the code with, and receive data from GRAPE-DR
hardware.

2) RV770: The backend for RV770 works similarly but
it’s tasks are rather simple because the backend generates not
architecture dependent code for RV770 but a target indepen-
dent code that is called intermediate language (IL). IL is a
part of the software development environment for GPU from
AMD/ATi named compute abstraction layer (CAL). CAL is
responsible for translating the IL code into the machine code
of RV770. Therefore IL behaves like a virtual instruction set
for GPU from AMD/ATi. With this methodology, our backend
does not have to care about detailed architecture of GPU and
possible future updates in architecture. Since CAL is also
responsible for physical register allocation, our backend does
not require register allocation.

Generation of SP/DP code for RV770 proceeds with a
similar as SP/DP code generation for GRAPE-DR. One critical
difference between GRAPE-DR and RV770 is internal struc-
ture of arithmetic units. A RV770 chip has 800 SP arithmetic
units with capacity of multiply-add operation in one cycle.
Internally, 800 SP units are divided into 160 groups where
each group consists of a combination of 4-vector SIMD unit
and a unit capable of special function like div, sin, cos etc.
To maximize performance, it is best to utilize 4-vector SIMD
unit as much as possible. So one way to make 4-vector SIMD
unit busy is to unroll the inner loop of force calculation in 4
ways as shown in Figure 3.

We did an experiment to implement the force calculation
loop Eq.(1) with the two schemes shown in Figure 2 and 3 (see
[11] for details). In the following, they are called I-unrolling
and IJ-unrolling schemes, respectively. In this experiment, we
used RV770 running at 750 MHz. Highest computing speed
obtained so far is ∼ 200 GFLOPS with the I-unrolling scheme.
This speed is comparable to previously reported speed of
another GPU [12]. On the other hand, we obtained ∼ 500
GFLOPS, which is about half of theoretical speed of the

system, with the IJ-unrolling scheme. Here, we assume that
one force calculation requires 20 SP operations. The result
with the latter scheme is the fastest ever reported with one
GPU chip. Our backend for SP code for RV770 generates a
code with the IJ-unrolling scheme by its default.

For QP code generation, we implement QP emulation code
in IL code. Our QP emulation code in IL requires 20, 23 and
38 DP operations for QP add/sub, QP mul, and QP div opera-
tions, respectively. In generating QP code, the backend simply
replaces each basic operations with a call to a corresponding
emulation code.

V. PERFORMANCE RESULTS

Finally, we report a current status of the compiler and an
obtained performance of sample applications. At the time of
writing, not all supported backend is fully optimized so that
here we report only interesting performance results.

A. Gravity in SP

Our first result is the performance of the force calculation
loop Eq.(1) using SP on RV770. Our compiler generates a
very efficient code from the source code shown in Figure 6.
As already noted, we obtained about 50 % of the theoretical
peak performance with the generated code. Actually, the peak
performance is only available if all SP operations are multiply-
accumulate operations. Except for matrix multiplication, such
situation does not arise in practice. Therefore, we believe one
half of the peak performance is quite high.

B. Feynman One-loop Integral in QP

Our next result is the evaluation of the Feynman one-loop
integral shown in Eq.(2). We adopt the double exponential
integration scheme to implement the one-loop integral. The
definition of the integrand in the original Fortran code is
written as 2 lines. With our language, the number of lines is 9
including definitions of variables. We test the integral on both
GRAPE-DR and RV770. After processing with the GRAPE-
DR QP backend, the generated assembly language contains
1079 instructions, which includes 34 nop operations. In other
words, a percentage of time during which arithmetic units are
stalled is as small as 3 %.

We run this code on one GRAPE-DR chip running at 380
MHz and obtain the following results; depending on the size of
N , the measured computing speeds are ∼ 2.67, 3.85, 4.80 and
5.46 GFLOPS for N = 256, 512, 1024, and 2048, respectively.
For RV770, we do same tests and obtain ∼ 6.43, 7.14, 7.46 and
7.57 GFLOPS for N = 256, 512, 1024, and 2048, respectively,
with one RV770 chip running at 750 MHz. From our tests with
SP operations described in the last section, we expect that
the IJ-unrolling scheme is also effective in this case. Further
investigations will be required to how performance is affected
by precise details of the generated code.

C. Hermite scheme in QP and mixed QP and DP

Our final application is calculation of Eq.(1) using QP
operations. Evaluation of gravity force in QP is desirable to

test three body scattering processes, which are thought to be
frequently occurred in star clusters and planetesimal. Also,
QP evaluation of gravity will be a necessary tool in future
simulations of a star cluster with high fraction of binary stars
In a such star cluster, smallest scale length is ∼ 106 cm while
the size of typical star cluster is ∼ 1021 cm. Apparently,
direct evaluation of gravity in DP brings large error. Here, we
report the implementation of the Hermite scheme, which is a
standard integration scheme in modeling a star cluster [13].
The Hermite scheme require us to compute a time derivative
of acceleration in addition to Eq.(1).

We generated the QP code, which computes both acceler-
ation and its time derivative, for RV770 and did benchmark
tests. The measured computing speeds with one RV770 chip
running at 750 MHz are ∼ 4.40, 4.68, and 6.31 GFLOPS
for N = 1024, 2048, and 4096, respectively. For the first
time, our compiler enable us to do astronomical many-particle
simulations in QP with a feasible computing speed.

In this particular problem, a gain using mixed QP and
DP operation is attractive. We modified the original code to
use QP operations only in the calculation of relative vectors
and the summation of the acceleration. Accordingly, only 6
add operations in the whole calculation are done with QP.
Note the whole operations in this case consist of 21 add, 19
mul, 1 div and 1 sqrt operations. The measured computing
speeds with the same configuration are ∼ 10.3, 19.8, and 27.8
GFLOPS for N = 1024, 2048, and 4096, respectively. Even
with this modification, we see negligible change in integration
error. This result is quite promising to use our compiler for
simulating the evolution of a highly dense star cluster.

VI. CONCLUSION

In this paper, we introduce a newly developed compiler for
high performance computing using many-core accelerators.
Accelerators are effective on specific problems that share a
certain pattern of calculations. Specifically, they are suited
to calculations which allow repeated reuse of data, and a
calculation with high compute density.

Our novel programming model for such calculations is
simple but sufficient to implement a several important com-
pute intensive applications. The moderate level of abstraction
combined with an explicit specification of type of variables
enable our compiler to generate highly efficient codes for
many-core accelerators GRAPE-DR and RV770 GPU. Another
novelty of the compiler is that it is possible to choose a
desirable numerical precision, SP, DP, QP or combination
of those precisions. The performance results of SP and QP
operations on GRAPE-DR and RV770 GPU obtained so far
are remarkable. We conclude that our programming model and
compiler is highly effective to many-core accelerators.

REFERENCES

[1] D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and
M. Umemura, “A Special-Purpose Computer for Gravitational Many-
Body Problems,” Nature, vol. 345, pp. 33–35, 1990.

[2] J. Makino and M. Taiji, Scientific Simulations with Special-Purpose
Computers — The GRAPE Systems. New York: John Wiley and Sons,
1998.

[3] J. Barnes and P. Hut, “A Hierarchical O(NlogN) Force-Calculation
Algorithm,” Nature, vol. 324, pp. 446–449, Dec. 1986.

[4] K. Nitadori, J. Makino, and P. Hut, “Performance tuning of N-body
codes on modern microprocessors: I. Direct integration with a hermite
scheme on x86 64 architecture,” New Astronomy, vol. 12, pp. 169–181,
Dec. 2006.

[5] J. Makino, “Specialized Hardware for Supercomputing,” SciDAC Re-
view, pp. 54–65, 2009.

[6] F. Yuasa, E. de Doncker, J. Fujimoto, N. Hamaguchi, T. Ishikawa,
and Y. Simizu, “Precise Numerical Evaluation of the Scalar One-Loop
Integrals with the Infrared Divergence,” in Proceedings of the ACAT
workshop, 2007, pp. 446–449.

[7] P. Wynn, “On the convergence and stability of the epsilon algorithm,”
SIAM Journal of Mathematical Physics, vol. 3, pp. 91–122, 1966.

[8] D. Kunuth, The Art of Computer Programming vol.2 Seminumerical
Algorithms, 1st ed. Reading, Massachusetts: Addison Wesley, 1998.

[9] T. Dekker, “A Floating-Point Technique for Extending the Available
Precision,” Numerische Mathematik, vol. 18, pp. 224–242, 1971.

[10] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[11] K. Fujiwara and N. Nakasato, “Fast Simulations of Gravitational
Many-body Problem on RV770 GPU,” 2009, extended
undergraduate thesis (University of Aizu 2008). [Online]. Available:
http://jp.arxiv.org/abs/0904.3659

[12] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation with cuda,”
in GPU Gems3. New York, NY: Addison-Wesley, 2007, pp. 677–696.

[13] J. Makino and S. J. Aarseth, “On a Hermite integrator with Ahmad-
Cohen scheme for gravitational many-body problems,” Publication of
Astronomical Society of Japan, vol. 44, pp. 141–151, Apr. 1992.

