A Compiler for High Performance
Computing with Many-core
Accelerators

N.Nakasato (University of Aizu, Japan)
J.Makino (National Astronomical Observatory, Japan)

No.2

Agenda

Problem description
— Astronomical Particle Simulations

Our Approach
Performance evaluation
Summary

3

No.
Astronomical Particle Simulation

« Simulate evolution of the universe
— As a collection of particles

— Depending on scale, each particle represents
« Galaxy
o Star
 Asteroid
» Gas blob etc.

— Particles are interacting

* Mainly by gravity
— Long-range force

No.4

Grand Challenge Problems

Hickson Compact Group 40 CISCO (J & K')

R
T he AP M G a"l a"Xy S u rvey Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999

Maddox Sutherland Efstathiou & Loveday -

No.5

Grand Challenge Problems

« Simulations with very huge N

— How Is mass distributed in the Universe?
« One big run with N ~ 10°-12

— Scalable on a simple big MPP system
 Limited by memory size

* Modest N but complex physics

— Precise modeling of formation of astronomical
objects like galaxy, star, solar system.

— Need many runs with N ~ 105/

Speed of a node

Cluster Configuration

No.6

Number of nodes

No.7

Numerical Modeling

» Solve ODE for many particles

D for me
S > F -7
dt S

where f is gravity, hydro force etc...

* Two main problems
— How to integrate the ODE?

8

A simple way to compute RHS

« Compute force summation as

for 1 = 0 to N-1
s[i] =
for j to N-1

s [1i] f(x[i], x[3])

Fig. 1. A simple nested loop to computer a general force calculation.

— Each s[i] can be computed independently
» Massively parallel if N is large

* Given i & |, each f(x[i],x[j]) can be computed
iIndependently if f() Is complex

No.9

Unrolling (vectrization)

 Parallel nature enable us to unroll the
outer-loop In n-ways

for 1 = 0 to N-1 each 4
s[1] = s[i+1l] = s[1+2] = s[1+3
for] 0 to N-1
+= f(x
+= £ fz
+= f(x
+= £ fz

1,
i+1],

i+2],
i+3],

[1
[
[
[

— Two types of variables
« X[i] and sJi] are unchanged during j-loop
* X[J] Is shared at each iteration

No.10

Using Many-core Accelerators

* To use accelerators, need two programs
— A program running on host
— A program running on accelerators

 Example

— C for CUDA / Brook+

e Host program in C++

« Compute kernel in extended C+ +
— Function with appropriate keyword

No.11

GRAPE-DR

B ARARALRL AR

One Chip:

512 PEs

Running at 400 MHz
8X PCI-E genl

288 MB

Consume ~ 50 W

Ranked at 277th on TOP500
Ranked at 51" on Green500

NO0.12

Many-core Accelerators

 Both GRAPE-DR and R700 GPU
— DP performance > 200 GFLOPS

— Have many local registers : 72/256 words

— Resource sharing in SP and DP units

Host Computer

BB unit | Broadcast Memory

FP) [FP) [P [FP) FP) FP) FP) [FP/ALU

GRAPE-DR chip

But different In

* R700 has more complex VLIW
stream cores

 R700 has no BM

* R700 has faster memory 1/O
DR has reduction network for
efficient summation

No.13

Our Approach

* Ask user to specify
— Which part of a code is
— In addition,
— Write that information in DSL

* Then, our compiler generates an code by
using predetermined optimization
technigques

— This Is dependent on a problem
— Current one Is only for the particle summation

Usage Model (1)

 Original source code of particle simulations

... initialization ...
while(t <=t_end) {
... predict ...
for(iI=0;1<n; i1++){
forg =0;)<n; j++){
f[1] += force(x[i], X[jD;
}
}

... update ...
t=1t+dt;

}

... finalization ...

Where the part to
be able to compute
In parallel

No.15

Usage Model (2)

 User write a source in DSL such as

LMEM xi, vi, zl, e2;
BMEM x7j,]]
EMEM ax,

rsgrt (dx**2 + dy**2 + dzxx2 + e2);
= mj*rli**3;

ax += afxdx;
ay += afxdy;
+= atf*dz;

— Our compiler generates optimized machine
code for GPU / GRAPE-DR

No.16

Usage Model (3)

* And also generates APIs as library to
send/recelve data and control the
accelerator

... initialization...

while(t <=t_end) {
... predict ..
send_data(n, x);
execute_kernel(n);
receive_data(n, f);
... update ...
t=t+dt;

Where a user replaces the nested
loop with call to APIs and link the
code with the generated library

}

... finalization ...

No.17

Features

— R700 architecture GPU

— GRAPE-DR
* Developed by JM etal.

— Single, Double, & Quadruple precision
* QP through DD emulation techniques
— Partially support mixed precision

No.18

Our Compller

o Written in C++
— Prototype was developed in Ruby

* We use following software/library
— Boost sprit for the parser
— Low Level Virtual Machine for the optimizer

— Google template library for the code
generators

No0.19

Compiler Flow

Source code =) -) source.llvm
[DR code gen.] — opt lvm ¢ -

!

source.vsm [GPU code gen

! !

1 l(device driver)

micro code for DR VLIW instructions for RV770
http://galaxy.u-aizu.ac.jp/trac/note/

No.20

Example 1 : N-body

« Simple softened gravity

LMEM xi, vi,

BMEM x7j, Y],
RMEM ax, ay,

Xj - xi;
yi - vyi;
zj - zi;

rli = rsgrt(dx**2 + dy**2 + dz**x2 + e2);
af = mj*xrlix«3;

¢ += afxdx;
+= af*dy;
+= afxdz;

Optimization on GPU

for 1 = 0 to N-1
accl[1i] = 0
for j = 0 to N-1 ~ 300 GﬂOpS

acc([i] += £(x[1], xI[j])

for 1 = 0 to N-1 each 4
accl[i] = accl[i+l] = acc[1+2] = accl[i1+3] = 0

1+2]
1+4+3]

accC
accCc

E ﬁ ﬁ ~ 500 Gflops
[| .
I

N-1 each 4
accl[i] = accli+l] = acc[i1+2] = accl[i1+3] = 0
for j = 0 to N-1 each 4

~ 700 Gflops

No0.22

Performance of O(N2) algorithm

T
RV770 750MHz
RV770 625MHz

4-way unrolling on R700 GPU
*Array of structure

4-vector SIMD in most efficient
Fastest with one GPU

38 operations per interactions

)
a1
Q
=
LL
&

1 1
100000 150000
N

No.23

Example 2: Feynman-loop integral

1 l—x l—r—vy
/ d.r / dy / dzF(x,y.z).
0 J0 J0
D(x.y.)2

—arys —tz(l —ox —y—2z) + (v + L’)Xz

+(l—ax—y—2z)(1—x— UJ”?E
+2(1 —x — y)mr?o. (2)

LMEM xx, yy, cnt4;

BMEM x30_1, gw30;

RMEM res;

CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;

d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +
(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;

res += gw30/d**2;

No0.24

Performance of QP operations

« Computation of Feynman-loop integral
— elapsed time in QP operations

GRAPE-DR

BRVTTO

- CPU ~ 80 Mflops
— R700 GPU ~
— GRAPE-DR ~ 2.67 — 5.46 Gflops

* Tow reasons why QP is so fast

— High compute density
— DR & R700 are register rich

No.25

Example 3: Mixed Precision

* High accuracy integration needs high

accuracy In distance and summation
LMEM x1i, vyi, ' .

BMEM xj, V],

RMEM ax, ay, :

= X] - X1i;
Yl - yi;
z] - zi;

rsqrt (dx*+2 + dy**2 + dz**2 + e2);
= m]*rli*x«*3;

ax += afxdx;
+= af«dy;
+= afxdz;

No.26

Mix Precision Example

* Add declaration lines to specify precision

of variables

IMPLICIT REALS;
LMEM xi, vyi, zi, e2;

BMEM xj, yj, zj, mj;
RMEM ax, ay, az;
REAL16 Xxi, yi, zi, Xj, Yj, zj, ax, ay, az;

 Performance of the Hermite scheme
 4-th order integration scheme

—6.31 GFLOPS with QP

No.27

Comparison

« Our approach is in between two
conventional approaches

— Automatic parallel compiler
« A user just feed an existing source code
 But not effective in general

— Let-users-do-everything-type compiler
« C for CUDA, OpenCL, Brook+ etc.

« A user have to specify every details of
— Memory layout and its movement
— SIMD operations
— Threads management on GPU

No0.28

Conclusion

* Many-core accelerators are effective In
astronomical/astrophysical N-body
simulations
— But how to program?

* We have constructed a compiler for many-
core accelerators

— That accelerate force-calculation-loop
— Features simplicity and controllable precision

* Planed Extension
— Support O(N log N) method on GPU

