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高性能計算(High Performance Computing)

マルチコア・メニーコア・並列計算機にかかわる全般の研究

GPUによるシミュレーションの高速化の実現

研究テーマの例

 OpenCLによる並列計算

 FPGA/ASICによる並列計算プロセッサの実現

 HPCによる大規模シミュレーション

 AI用プロセッサの研究とAIの応用
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身近に使える並列計算機

マルチコアCPU

 文書作成やWeb処理に向いている

 2 – 64 core

 GPU

 コンピュータグラフィックス処理に向いている

 数値シミュレーションにも

OpenCLでプログラミングできる
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OpenCLによる並列計算：流体シミュレーション
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OpenCLによる並列計算：宇宙のシミュレーション

最新のGPUによる惑星の合体シミュレーション
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津波シミュレーションの高速化

津波が発生した際に波の到達を予測したい

 MOST法シミュレーションによる予測

MOST法による津波シミュレーション  
                                              OpenMP並列化と性能評価 

会津大学大学院コンピュータ理工学研究科 

概要・目的 

河野郁也, 中里直人, 林憲作, Alexander Vazhenin, Stanislav Sedukhin 

・MOST による津波シミュレーション 高速化 

・様々な並列プログラミング環境下で プログラム
並列化と評価を行う 
・実時間 津波伝搬よりも速い計算完了を目指す 
・本稿で OpenMPによる並列化で，MIC(Many Core 
Integrated)アーキテクチャ環境下における性能を評価 

支配方程式 
「浅水方程式」と呼 れる偏微分方程式 

η   

 
 
 ：波高 

D   ：水深 
H ：D  +

 

 η 
 

(全波高) 
u,v ：波 速度成分 
g  ：重力加速度 

MOST（Method of Splitting Tsunami) 
2次元配列上 波 速度(緯度，経度方向)と高さを，1方向ずつ差分法および陽なオイラー法による時間積分
を適用して更新 

横（経度）方向：1行分 各データをコピーした後，そ 行におけ

る緯度による補正（地球 曲率に由来）を計算．コピーした配列に
対して更新を行い，再び2次元配列に戻す． 

 

縦（緯度）方向：1列分 各データをコピーした後，コピーした配列
に対して更新を行い，再び2次元配列に戻す．オリジナルコードで
，各要素で緯度補正を計算している． 

 ベンチマーク・評価方法 
・1ステップに1秒 刻みで300ステップ 計算にかかる時間を計測 
・太平洋全域 水深データ(2581×2879, 右図)を用いる 
・OpenMPで ，各時間ステップにおいて更新する1行および1列分 データ
を選択する最も外側  for文 を並列化を行う 
・コンパイラ  icc を用い，Intel Xeon Phi上で実行 

 
単純にOpenMP化したも （Ⅰ ），緯度方向計算 前後に転置処理
を入れたも （Ⅰ ），2次元配列を一度にコピーし更新するも （Ⅰ ）

3種類 コードでベンチマークを行う． 
 
 
 
 
 

 計算機環境 (MIC, Intel Xeon Phi) 

結果 アルゴリズム 修正 
（Ⅰ ）転置処理 導入 
オリジナルコードで ，緯度方向 計算において 

配列 列アクセスが発生し，性能低下 原因となる．
計算 前後に単純に(i,j)成分と(j,i)成分を順に入れ

替えていく転置を挟み，行アクセスで計算できるよう
にした．(転置処理もOpenMP化) 
 
 
 
 
 
 
 

 
（Ⅰ ）2次元配列を一度にまとめて処理 
これ 今後行うGPU計算で十分な並列性能を得る
ため 修正である．これまで 1行また 1列を選ん
で2次元配列からコピーし，そ コピーしてきた1次

元配列に対して更新 処理をしていたが，こ 変更
で 2次元配列をそ ままコピーして更新に必要な
処理を全配列要素に対して一度に行う． 

各コード 実行時間 (単位：時間) 

各コード 1スレッド実行に対する速度向上 

icc 最適化オプション O2 における実行結果を示す． 

・単純にOpenMP化したコード（Ⅰ ）で
シリアル実行で2.7時間かかる 

・32スレッド以降, 性能向上しなかった 
 

・転置を行うコード（Ⅰ ）で シリアル
実行で2.6時間 
・ 32スレッド以降でも性能が向上し， 
240スレッドで 約100倍 Speed-up 

・2次元配列を一度に処理するコード（Ⅰ ） 
で シリアル実行で約4.7時間と遅い 
・240スレッドで コード（Ⅰ ）と同等 向上 

 
また，コード（Ⅰ ）で 緯度方向 計算時間短縮を目的に転置処理を実装したが， 
実際 経度方向 計算時間が大幅に短縮される結果となった． 
Ⅰ 単純な転置による2次元配列 全アクセスによりキャッシュヒットが起き， 
2ステップ目以降 経度方向計算におけるメモリアクセスが高速化されたことが可能性

1つとして考えられる．（今後，転置 アルゴリズムを変更して差が出るか検証） 

3つ コードで ，転置処理を挟んだも （Ⅰ ）が最も高速に計算できる． 
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機械学習とFPGAの応用

Blur and Canny filters

640x480 color image

Hough transform

Line and Object detection
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様々な演算精度による効率的な数値計算

単精度変数

倍精度変数

四倍精度変数 : ソフトウエア実行が必要

半精度変数 : 特にモバイルプロセッサで利用される
機械学習で最も効率がよい



演算精度に最適な演算プロセッサを設計

 HDLにより演算回路を設計

 RISC-Vプロセッサに組み込み

 OpenCL/AWS F1 ShellによりFPGAに実装

 アプリケーションの性能評価

RISC-Vプロセッサの高性能化と応用

Amazon AWS F1 Instance

Evaluation of pipelines in 

binary128 units 
                           

                                  We use OpenCL as shell. 

We have designed a pipeline that calculate the 

summation of force and potential energy for N-body 

simulations. Each iteration requires 20 FP operations 

(10 add, 9 mul and 1 inverse-square-root(rsqrt)). We 

used  OpenCL as a shell to implement the customized 

pipeline for the summation in binary128 operations. 

We measured the elapsed time of running our kernels 

for N = 64K on Cygnus Albireo nodes and evaluated 

the performance in FLOPS. The largest kernel (12 

pipelines)units working at ~  160MHz. The performance 

is 38.2 Gflops. On the other hand, we found that the 

performance of the calculation of the same summation 

on a single core of Intel Xeon E5-1620v4 using the 

quadmath extension is 25.1 Mflops.

High Performance High-Precision Floating-Point
Operations on FPGAs using OpenCL

Abstract— Development of high-level synthesis tools such as
OpenCL SDK for FPGAs enables us to design accelerators for
scientific applications that can take advantage of flexibility and
efficiency of FPGAs. However, the available OpenCL SDK s only
support the standard floating-point (FP) formats. I n this paper,
we present the performance evaluation of high precision FP
operations, which are currently not supported in OpenCL , on
recent FPGAs. By using a mechanism to call a custom design
from an OpenCL kernel, we evaluate the performance of a sample
application in high precision FP format binary128. W e found that
the sustained performance of our design in binary128 on I ntel
Arr ia10 and Stratix10 is 19 and 71 Gflops, respectively.

I . INTRODUCTION

Recently, high-level synthesis (HLS) tools such as Maxeler
[1], Intel FPGA SDK for OpenCL [2] and X ilinx SDAccel
are being mature to implement scientific and engineering
applications on reconfigurable systems. In tandem with latest
FPGA devices fabricated in 28/20/16/14 nm process rules,
it is now feasible to implement fairly complex numerical
algorithms e.g., [3], [4] through various HLS design flows.

Recent FPGAs such as Arria10 and Stratix10 have DSP
blocks which can natively support IEEE single-precision
floating-point(FP) operations. For these FPGAs, Intel FPGA
SDK for OpenCL supports the standard IEEE FP formats [5],
namely, binary16 (half-precision), binary32 (single-precision),
and binary64 (double-precision). Applications with these stan-
dard FP operations can be easily implemented by using
the same programming model that has been available for
other OpenCL devices like graphic processing units (GPUs).
However, we can not use the OpenCL SDK to directly
implement particular scientific applications that require a low-
or high-precision FP format. To implement such applications
on FPGAs, we need to work with a traditional design flow in
a hardware description language (HDL).

There are numerical applications that require an arbitrary
FP operations, i.e. in binary128 or ever higher-precision FP
formats e.g., [6]. The binary128 format is a standard IEEE
FP format but is currently not supported in OpenCL. Since
Intel FPGA SDK for OpenCL provides support enabling to
call a custom module from an OpenCL kernel, we can use
the OpenCL framework as a shell [7] to our applications that
require a non-standard FP operations. To design a dedicated
hardware of these applications on FPGAs, we have developed
a parameterized FP unit generator called VeRB (Vhdl via em-
bedded RuBy). W ith VeRB, we can generate an RTL in VHDL
of FP operations by specifying the combination of the size of
mantissa (nm an ) and exponent (nexp ). In this paper, we report
the performance evaluation of high-precision FP operations on
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Fig. 1. Comparison of a programmable architecture and a pipeline architecture

FPGAs through the OpenCL based HLS in combination with
VeRB. In the following, we focus on FP units generated by
VeRB in binary128 format, i.e., (nm an , nexp ) = (112, 15).

There are two possible architectures to utilize FP operations
as a custom hardware on FPGAs. One is a programmable
architecture and the other is a pipeline architecture. A com-
parison of the two architectures are shown in Fig. 1.

Given an FPGA that is large enough to implement n add and
n multiply (mul) FP units, we consider to implement a custom
hardware of an application that requires p add and q mul
operations. In any case, it is possible to design a programmable
processor that has both add and mul units so that it takes p+ q
instructions to compute the calculation if the processor can
issue one operation per cycle. If the processor supports dual
issues of add and mul operations or has a fused-multiply-
add unit [8], it takes ⇠ max(p, q) steps in ideal cases. A
disadvantage of this architecture is that the performance is not
optimal if p q or vise versa.

On the other hand, if p + q 2n, we can design a
dedicated pipeline circuit of the application on the FPGA.
Even if either p or q is larger than the other, the dedicated
pipeline architecture enables us to efficiently implement only
necessary FP units and to use temporal parallelism between
FP operations. In addition, we can make the circuit faster by
pipelining each FP units as much as possible.

In [9], they reported their programmable architecture for
high-precision FP operations on a structured ASIC chip.
They designed a programmable processing element (PE) that

VeRB : FP unit generator 
To effectively use a non-standard high-precision FP 

operations as IP library on recent FPGAs by using OpenCL, 

we are developing yet another parameterized FP unit 

generator called VeRB. Our focus is to design area efficient 

and high performance FP units. 

(a) pipelined with modest latency 

(b) force-one rounding 

(c) truncated multiplier for efficient usage of DSPs 

We have evaluated our FP units against FP units generated 

by FloPoCo on Arria10 and Stratix10. 

Evaluation of Feynman loop integrals is a numerically 

unstable problem. A way to overcome the difficulty is to 

directly evaluate an integral in “high-precision” floating-

point (FP) arithmetic operations. 

But it is really slow! 
(a) Double-Double (DD) emulation on x86-64 requires 

24 double operations for a multiply operation 

21 double operations for an add operation 

   Performance on one core ~  O(100) Mflops 

(b) binary128 emulation (GNU quadmath) is even slower 

   Performance on one core ~  O(10) Mflops 

We have designed and used GRA PE9-MPX for the 

acceleration of  the evaluation of Feynman loop integrals 

(Daisaka etal. 2015, 2018). GRAPE9-MPX is a custom 

programmable computer system with high-precision FP 

units. Due to the nature of integrands (polynomials of 3 - 8 

dimensions), the programable architecture is not always 

efficient. In this work, we design a fully pipelined circuit to 

compute a summation loop for N-body simulations in 

binary128 FP operations. 
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      Project Code: HPFP N.Nakasato etal.

Two accelerator architectures

Our previous work

TABLE II
SY NTHESIS RESULTS OF ADD ON ARRIA10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 5 3 5 7 12 17 93

Logic Utilization 1172 1330 1,272 1229 1354 1,557 3,237

Registers 1329 1179 1715 1991 3040 3049 8041

Fmax 193.69 95.58 110.4 118.85 262.47 301.3 499.25

TABLE III
SY NTHESIS RESULTS OF M UL ON ARRIA10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 6 1 3 4 8 14 79

Logic Utilization 592 1278 1206 1255 1287 1506 3,547

Registers 1666 583 1111 1386 2449 3687 4201

DSP 20 35 35 35 35 35 35

Fmax 247.59 139.8 139.51 196.93 253.61 296.12 414.94

TABLE IV
SY NTHESIS RESULTS OF ADD ON STRATI X 10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 5 3 5 7 12 17 93

Logic Utilization 1,377 1,576 1,532 1,564 1,660 1,965 4,350

Registers 2787 1801 2679 2993 4543 6025 13735

Fmax 218.2 126.45 180.12 230.73 324.46 344.95 517.33

TABLE V
SY NTHESIS RESULTS OF M UL ON STRATIX 10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 6 1 3 4 8 14 79

Logic Utilization 797 1,342 1,519 1,725 1,795 2,255 4,234

Registers 1915 772 4502 4038 3353 4816 10674

DSP 20 35 35 35 35 35 35

Fmax 285.88 112.21 203.75 228 283.77 284.17 455.37

A. Target Application

The calculation of the mutual force is compute intensive
and a highly parallel part of N -body simulations. Given N
particles with the position ~x i and the mass mi , we compute
mutual force ~f and potential φ due to a softened Newtonian
gravity as the following equations:

~f (~x i ) = −

NX

j

mj (~x i − ~x j )

(r 2 + ✏2 )3/ 2
, φ(~x i ) = −

NX

j

mj

(r 2 + ✏2 )1/ 2
,

(3)
where r 2 = |~x i − ~x j |

2 and ✏is a softening parameter. For N
particles, we can implement Eqs. (3) as a two-nested loop for
index i and j . The most inner loop of the calculation requires
20 FP operations including 10 add/sub, 9 mul and 1 rsqrt
operations.

The calculation of the rsqrt function in binary128 requires
the following special treatment. Since our implementation of
the parametrized rsqrt unit is not efficient for large nm an , we
can not directly use it in our applications. In the present work,

we fi rst compute an approximate value with nm an = 25 which
is roughly 1/4 of the size of significant for binary128 as 112.
We can improve this initial guess by applying the Newton
iteration. It additionally requires 3 mul and 1 add operations
for each iteration and produces a result roughly 2 times more
accurate than the input. Thus, with an initial guess in 25 bit
accuracy, two Newton iterations are enough to obtain roughly
100 bit accuracy in theory. The resource usage of the special
rsqrt unit with (nm an , nexp ) = (25, 15) used to compute the
initial guess is shown in Table VI. Since one additional mul
operation is necessary for the initialization of the Newton
iteration, we use 9 FP operations (7 mul and 2 add) in addition
to the rsqrt operation.

B. Implementation of a pipeline circuit in OpenCL

We use a shell part of an OpenCL SDK Framework for
FPGAs and integrate FP units generated by VeRB as a Roll. To
do this integration of our customized design and the OpenCL
framework, we use a mechanism calling a custom RTL design
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A. Target Application

The calculation of the mutual force is compute intensive
and a highly parallel part of N -body simulations. Given N
particles with the position ~x i and the mass m i , we compute
mutual force ~f and potential φ due to a softened Newtonian
gravity as the following equations:

~f (~x i ) = −

NX

j

mj (~x i − ~x j )

(r 2 + ✏2 )3/ 2
, φ(~x i ) = −

NX

j

mj

(r 2 + ✏2 )1/ 2
,

(3)
where r 2 = |~x i − ~x j |

2 and ✏is a softening parameter. For N
particles, we can implement Eqs. (3) as a two-nested loop for
index i and j . The most inner loop of the calculation requires
20 FP operations including 10 add/sub, 9 mul and 1 rsqrt
operations.

The calculation of the rsqrt function in binary128 requires
the following special treatment. Since our implementation of
the parametrized rsqrt unit is not efficient for large nm an , we
can not directly use it in our applications. In the present work,

we fi rst compute an approximate value with nm an = 25 which
is roughly 1/4 of the size of significant for binary128 as 112.
We can improve this initial guess by applying the Newton
iteration. It additionally requires 3 mul and 1 add operations
for each iteration and produces a result roughly 2 times more
accurate than the input. Thus, with an initial guess in 25 bit
accuracy, two Newton iterations are enough to obtain roughly
100 bit accuracy in theory. The resource usage of the special
rsqrt unit with (nm an , nexp ) = (25, 15) used to compute the
initial guess is shown in Table VI. Since one additional mul
operation is necessary for the initialization of the Newton
iteration, we use 9 FP operations (7 mul and 2 add) in addition
to the rsqrt operation.

B. Implementation of a pipeline circuit in OpenCL

We use a shell part of an OpenCL SDK Framework for
FPGAs and integrate FP units generated by VeRB as a Roll. To
do this integration of our customized design and the OpenCL
framework, we use a mechanism calling a custom RTL design

Fig. 2. Truncated multiplier

where x , y are 113 bit and z is 226 bit in the present case. We
synthesize and fi t this full multiplier for our target FPGAs and
find that 40 DSP blocks are required. Note the DSP block of
our target FPGAs can be configured as 27⇥27 bit multiplier.

To reduce the usage of DSP blocks, we have adopted a
technique called truncated multiplier [12], [13]. Our imple-
mentation of the truncated multiplier calculates an approxi-
mate result ztruncated as

ztruncated = x[112 : 41]⇥y[112 : 41]

+ x[40 : 0]⇥y[112 : 59] + x[112 : 59]⇥y[40 : 0], (2)

where we use the bit slice notation as the same as Verilog
HDL. Fig. 2 shows a schematic view of our truncated multi-
plier. The parallelogram represents whole partial sums in the
pencil-and-paper algorithm for multiplication. The red region
in the parallelogram shows calculated partial sums in Eq. (2).
W ith this truncated multiplier, we can reduce the number of
DPS blocks for each FP mul unit from 40 to 20. Also, we
can easily pipeline the FP mul unit by separately pipelining
the calculations of each partial sum. Loss of accuracy is non-
trivial to estimate analytically, however, we have tested our
FP mul algorithm against random inputs and found that our
truncated multiplier has effectively no significant error for our
purpose.

B. Evaluation of FP units in binary128

Here, we compare the size and performance of FP units
generated by VeRB and FP units generated by FloPoCo.
We only consider an FP format as the same as binary128,
i.e., (nm an , nexp ) = (112, 15). Using FloPoCo, we generated
six variations of FP add and mul units by only changing a
parameter f r equency as 100, 150, 200, 300, 400, and 600
MHz.

We use Terasic DE5a-Net Arria10 FPGA Development
K it (Arria10 GX FPGA 10AX115N2F45E1SG) and Intel
Stratix10 GX FPGA Development K it (Stratix10 GX FPGA
1SG280HU2F50E2VG) as hardware platforms shown in Ta-
bles I throughout the present work. A board support package
(BSP) for Arria10 and Stratix10 is available for Quartus 17.1.2
and 18.0, respectively. We use the corresponding version of
Quartus to synthesize and fi t each FP unit to estimate the size
and the speed (Fmax) of the unit.

TABLE I
SPECIFICATION OF A RRIA10 AND STRATIX 10 DEVELOPM ENT K ITS

Arria10 Stratix10

Logic cells 427,200 933,120

DSP blocks 1,518 5,760

M20K RAM blocks 2,713 11,721

Memory bits (total) 55,562,240 240,046,080

2 ⇥ DDR3-1066
8GB

17.1 GB/s

1 ⇥ DDR4-1866
2GB

14.9 GB/s
Main Memory

Tables II , I I I , IV, V show synthesis results as the number
of pipeline stages, resource utilization and Fmax of FP add
and mul units on the two devices, respectively. The column
VeRB shows our FP units and other columns with FLPC
show the results for FP units generated by FloPoCo where an
integer number in each column header represents the specified
f r equency parameter. For units generated by FloPoCo with
larger target frequency settings, we need larger number of
pipeline stages. Note both our and FloPoCo designs do not
treat FP exceptions and subnormal numbers. All FP add
units are based on a standard single-path algorithm [14].
Accordingly, the two implementations are fairly similar except
that we manually pipeline our designs for specific numbers of
pipeline stages targeting at Fmax ⇠ 200 MHz.

For FP add units shown in Tables II and IV, our unit
is smaller and has higher Fmax than the unit generated by
FloPoCo with the same number of pipeline stages (4th column)
. The results in 8th (400 MHz) and 9th (600 MHz) columns
indicate that it is possible to archive even higher Fmax on
the current FPGA devices. However, such high performance
designs require very large number of pipeline stages (i.e., long
latency). A crucial difference between our design and FloPoCo
designs is the treatment of rounding as already explained. For
FP mul units shown in Tables II I and V, our unit is much
smaller and has similar Fmax compared to the unit generated
by FloPoCo with a comparable number of pipeline stages (5,
6th columns) . This is because we use the truncated multiplier
in our FP mul unit. Regarding different FPGA devices, the
performance on Stratix10 is generally better than that on
Arria10 with few exceptions.

Note that FloPoCo has several options to generate FP units
in different configurations. Furthermore, FloPoCo internally
has device models, that are used to control pipeline stages in
VHDL modules for specific generations of FPGAs. Because
FloPoCo version 4.1.2 that is a latest public version does not
contains device models for Arria10 and Stratix10, we do not
specify a device model to generate FP add/mul units in the
present work.
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In this section, we present the evaluation of the pipeline
architecture in binary128. First we introduce our target appli-
cation.

Fig. 2. Truncated multiplier

where x , y are 113 bit and z is 226 bit in the present case. We
synthesize and fi t this full multiplier for our target FPGAs and
find that 40 DSP blocks are required. Note the DSP block of
our target FPGAs can be configured as 27⇥27 bit multiplier.

To reduce the usage of DSP blocks, we have adopted a
technique called truncated multiplier [12], [13]. Our imple-
mentation of the truncated multiplier calculates an approxi-
mate result ztru ncated as

ztru ncated = x[112 : 41]⇥y[112 : 41]

+ x[40 : 0]⇥y[112 : 59] + x[112 : 59]⇥y[40 : 0], (2)

where we use the bit slice notation as the same as Verilog
HDL. Fig. 2 shows a schematic view of our truncated multi-
plier. The parallelogram represents whole partial sums in the
pencil-and-paper algorithm for multiplication. The red region
in the parallelogram shows calculated partial sums in Eq. (2).
W ith this truncated multiplier, we can reduce the number of
DPS blocks for each FP mul unit from 40 to 20. Also, we
can easily pipeline the FP mul unit by separately pipelining
the calculations of each partial sum. Loss of accuracy is non-
trivial to estimate analytically, however, we have tested our
FP mul algorithm against random inputs and found that our
truncated multiplier has effectively no significant error for our
purpose.

B. Evaluation of FP units in binary128

Here, we compare the size and performance of FP units
generated by VeRB and FP units generated by FloPoCo.
We only consider an FP format as the same as binary128,
i.e., (nm an , nexp ) = (112, 15). Using FloPoCo, we generated
six variations of FP add and mul units by only changing a
parameter f r equency as 100, 150, 200, 300, 400, and 600
MHz.

We use Terasic DE5a-Net Arria10 FPGA Development
K it (Arria10 GX FPGA 10AX115N2F45E1SG) and Intel
Stratix10 GX FPGA Development K it (Stratix10 GX FPGA
1SG280HU2F50E2VG) as hardware platforms shown in Ta-
bles I throughout the present work. A board support package
(BSP) for Arria10 and Stratix10 is available for Quartus 17.1.2
and 18.0, respectively. We use the corresponding version of
Quartus to synthesize and fi t each FP unit to estimate the size
and the speed (Fmax) of the unit.

TABLE I
SPECI FI CATION OF A RRIA10 AND STRATIX 10 DEVELOPM ENT K ITS

Arria10 Stratix10

Logic cells 427,200 933,120

DSP blocks 1,518 5,760

M20K RAM blocks 2,713 11,721

Memory bits (total) 55,562,240 240,046,080

2 ⇥ DDR3-1066
8GB

17.1 GB/s

1 ⇥ DDR4-1866
2GB

14.9 GB/s
Main Memory

Tables II , I I I , IV, V show synthesis results as the number
of pipeline stages, resource utilization and Fmax of FP add
and mul units on the two devices, respectively. The column
VeRB shows our FP units and other columns with FLPC
show the results for FP units generated by FloPoCo where an
integer number in each column header represents the specified
f r equency parameter. For units generated by FloPoCo with
larger target frequency settings, we need larger number of
pipeline stages. Note both our and FloPoCo designs do not
treat FP exceptions and subnormal numbers. All FP add
units are based on a standard single-path algorithm [14].
Accordingly, the two implementations are fairly similar except
that we manually pipeline our designs for specific numbers of
pipeline stages targeting at Fmax ⇠ 200 MHz.

For FP add units shown in Tables II and IV, our unit
is smaller and has higher Fmax than the unit generated by
FloPoCo with the same number of pipeline stages (4th column)
. The results in 8th (400 MHz) and 9th (600 MHz) columns
indicate that it is possible to archive even higher Fmax on
the current FPGA devices. However, such high performance
designs require very large number of pipeline stages (i.e., long
latency). A crucial difference between our design and FloPoCo
designs is the treatment of rounding as already explained. For
FP mul units shown in Tables II I and V, our unit is much
smaller and has similar Fmax compared to the unit generated
by FloPoCo with a comparable number of pipeline stages (5,
6th columns) . This is because we use the truncated multiplier
in our FP mul unit. Regarding different FPGA devices, the
performance on Stratix10 is generally better than that on
Arria10 with few exceptions.

Note that FloPoCo has several options to generate FP units
in different configurations. Furthermore, FloPoCo internally
has device models, that are used to control pipeline stages in
VHDL modules for specific generations of FPGAs. Because
FloPoCo version 4.1.2 that is a latest public version does not
contains device models for Arria10 and Stratix10, we do not
specify a device model to generate FP add/mul units in the
present work.
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BINARY 128 OPERATIONS

In this section, we present the evaluation of the pipeline
architecture in binary128. First we introduce our target appli-
cation.

Evaluated FPGAs

TABLE II
SY NTHESIS RESULTS OF ADD ON A RRIA10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 5 3 5 7 12 17 93

Logic Utilization 1172 1330 1,272 1229 1354 1,557 3,237

Registers 1329 1179 1715 1991 3040 3049 8041

Fmax 193.69 95.58 110.4 118.85 262.47 301.3 499.25

TABLE III
SY NTHESIS RESULTS OF M UL ON A RRIA10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 6 1 3 4 8 14 79

Logic Utilization 592 1278 1206 1255 1287 1506 3,547

Registers 1666 583 1111 1386 2449 3687 4201

DSP 20 35 35 35 35 35 35

Fmax 247.59 139.8 139.51 196.93 253.61 296.12 414.94

TABLE IV
SY NTHESIS RESULTS OF ADD ON STRATI X 10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 5 3 5 7 12 17 93

Logic Utilization 1,377 1,576 1,532 1,564 1,660 1,965 4,350

Registers 2787 1801 2679 2993 4543 6025 13735

Fmax 218.2 126.45 180.12 230.73 324.46 344.95 517.33

TABLE V
SY NTHESIS RESULTS OF M UL ON STRATIX 10

VeRB FLPC100 FLPC150 FLPC200 FLPC300 FLPC400 FLPC600

Pipeline stages 6 1 3 4 8 14 79

Logic Utilization 797 1,342 1,519 1,725 1,795 2,255 4,234

Registers 1915 772 4502 4038 3353 4816 10674

DSP 20 35 35 35 35 35 35

Fmax 285.88 112.21 203.75 228 283.77 284.17 455.37

A. Target Application

The calculation of the mutual force is compute intensive
and a highly parallel part of N -body simulations. Given N
particles with the position ~x i and the mass mi , we compute
mutual force ~f and potential φ due to a softened Newtonian
gravity as the following equations:

~f (~x i ) = −

NX

j

mj (~x i − ~x j )

(r 2 + ✏2 )3/ 2
, φ(~x i ) = −

NX

j

mj

(r 2 + ✏2 )1/ 2
,

(3)
where r 2 = |~x i − ~x j |

2 and ✏is a softening parameter. For N
particles, we can implement Eqs. (3) as a two-nested loop for
index i and j . The most inner loop of the calculation requires
20 FP operations including 10 add/sub, 9 mul and 1 rsqrt
operations.

The calculation of the rsqrt function in binary128 requires
the following special treatment. Since our implementation of
the parametrized rsqrt unit is not efficient for large nm an , we
can not directly use it in our applications. In the present work,

we fi rst compute an approximate value with nm an = 25 which
is roughly 1/4 of the size of significant for binary128 as 112.
We can improve this initial guess by applying the Newton
iteration. It additionally requires 3 mul and 1 add operations
for each iteration and produces a result roughly 2 times more
accurate than the input. Thus, with an initial guess in 25 bit
accuracy, two Newton iterations are enough to obtain roughly
100 bit accuracy in theory. The resource usage of the special
rsqrt unit with (nm an , nexp ) = (25, 15) used to compute the
initial guess is shown in Table VI. Since one additional mul
operation is necessary for the initialization of the Newton
iteration, we use 9 FP operations (7 mul and 2 add) in addition
to the rsqrt operation.

B. Implementation of a pipeline circuit in OpenCL

We use a shell part of an OpenCL SDK Framework for
FPGAs and integrate FP units generated by VeRB as a Roll. To
do this integration of our customized design and the OpenCL
framework, we use a mechanism calling a custom RTL designTABLE I

SYNTHESIS AND PERFORM ANCE RESULTS OF M ULTIPLE PIPELINES FOR STRATIX10

N p ip el i n e 1 4 8 12

Logic utilization 234,656 (25% ) 363,325 (39% ) 545,819 (58% ) 781,483 (84% )

ALUTs 192227 352932 581707 867919

Registers 337,618 554,631 872,888 1,203,557

DSP blocks 232 (4% ) 928 (16% ) 1,856 (32% ) 2,784 (48% )

Memory bits 9,291,592 (4% ) 10,512,072 (4% ) 11,991,240 (6% ) 15,606,344 (7% )

RAM blocks 866 (7% ) 1,036 (9% ) 1,152 (9% ) 1,493 (13% )

Fmax (MHz) 223.21 229.88 206.1 159.48

Performance (Gflops) 4.45 18.3 32.9 38.2

TABLE II
SYNTHESIS AND PERFORM ANCE RESULTS OF RGEMM FOR STRATIX10

Blocking 1x1 2x2 4x4

Logic utilization 178,409 (19% ) 194,129 (21% ) 372,714 (58% )

ALUTs 120797 148511 387233

Registers 235,123 293,933 631,465

DSP blocks 21 (1% ) 137 (2% ) 1042 (18% )

Memory bits 7,176,392 (4% ) 9,310,408 (5% ) 14,845,640 (6% )

RAM blocks 667 (7% ) 777 (7% ) 1,280 (11% )

Fmax (MHz) 278.16 248.5 218.1
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