
Astronomical Particle 
Simulations with GPU

N.Nakasato (University of Aizu)

JIFT Workshop 2011
" The Next Stage in the Progress of Simulation Science in Plasma Physics "
NIFS, Toki, Japan,  2011/12/02-03



Agenda

• Introduction to particle simulation in 
astronomy

•Direct summation code on GPU

•Octree implementation on GPU

•Application to SPH method

•Summary



Accelerators: GPU
• Emergent architecture for HPC

• “parallel computer” on a chip
• Good for compute intensive app.

•

Complexity Application Sustained / Peak

O(N3) or more Numerical Integration 100%

O(N2) simple N-Body 90% or more

O(N1.5) Matrix Multiplication 60% (so far)

O(N log N) Octree method 1 - 2%

O(N) Explicit Hydro code very low in principle



Objects in the Universe
star cluster galaxysolar system

cluster of galaxies



Numerical model

star cluster
individual stars

galaxy
blob of stars&DM

solar system
sun&planets

whole universe
blob of DM



collision-less particle system

e.g. simulation of large scale structure in the universe
N is huge & less accuracy

collisional particle system

e.g. simulation of solar system or star cluster
N is small & demand high accuracy



collisional particle system
computational complexity O(N2)

direct summation
need high accuracy

Figure 13: Distribution of planetesimals at T = 800 (left) and at T = 30400 (right).

This work is supported by the Research for the Future Program of Japan Society for the
Promotion of Science (JSPS-RFTF97P01102).

References

[Aar63] Aarseth Sverre J. (1963) MNRAS 126: 223–255.

[Ha81] Hayashi, C. (1981) Prog. Theor. Phys. Suppl. 70: 35–53.

[HNN85] Hayashi, C., Nakazawa, K. and Nakagawa, Y. (1985) Formation of the solar system.
In Protostars and Planets II (D. C. Black and M. S. Mathews, Eds.), pp. 1100-1153.
Univ. of Arizona Press, Tucson.

[MA93] McMillan S. L. W. and Aarseth S. J. (1993) ApJ 414: 200–212.

[Mak91] Makino J. (1991) PASJ 43: 859–876.

[Mak97] Makino J. (1997) ApJ 478: 58+.

[McM86] McMillan S. L. W. (1986) In Hut P. and McMillan S. (eds) The Use of Supercomputers

in Stellar Dynamics, pages 156–161. Springer, New York.

[MT98] Makino J. and Taiji M. (1998) Scientific Simulations with Special-Purpose Computers

— The GRAPE Systems. John Wiley and Sons, Chichester.

[Sa69] Safronov, V. S. (1969) Evolution of the Protoplanetary Cloud and Formation of the
Earth and the Planets, Nauka, Moscow.

[SCM+90] Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki T., and Umemura M. (1990)
Nature 345: 33–35.

13



GRAPE-6A (2002)
   fixed function 
   30 Gflops (90MHz)
   10W
   200 Myen (2.4 Tflops)
   super energy efficient

GPU (AMD Cypress, 2010)
   programmable 
   600 Gflops (850MHz)
   200W
   40,000 yen
   highly cost effective



Performance of O(N2) algorithm

2.6 Tflops in single precision on a recent GPU



GRAPE-6 emulation library on GPU

350 Gflops on a recent GPU



phi-GPU6 on Tesla
1 Accelerated Many-Core GPU computing on Three Continents 9

 0.1

 1

 10

 25

 50

 1  2  4  8  16  32

S
p
e
e
d
 
[
T
f
l
o
p
s
]

Processors - NP [GPU]

phi-GPU6 on "Dirac" with Tesla C2050

!550 [Gflops/GPU]•NP

    1M

  512K

  256K

  128K

   64K

   32K

   16K

N = 8K

 0.1

 1

 10

 25

 50

 100

 250

 500

 1  2  4  8  16  32  64 128 256 512

S
p
e
e
d
 
[
T
f
l
o
p
s
]

Processors - NP [GPU]

phi-GPU6 on "Mole-8.5" with Tesla C2050

!550 [Gflops/GPU]•NP

    2M

    1M

  512K

  256K

  128K

   64K

   32K

   16K

N = 8K

Fig. 1.2 Strong scaling for different problem sizes; Left: Dirac Fermi Tesla C2050 GPU system
at NERSC/LBNL, almost 18 Teraflops reached for one million particles on 40 GPU’s. Each line
corresponds to a different problem size (particle number), which is given in the key. Note that the
linear curve corresponds to ideal scaling. Right: Same benchmark simulations, but for the Mole-
8.5 GPU cluster at IPE in Beijing, using up to 512 Fermi Tesla C2050 GPU’s, reaching a sustained
speed of 130 Teraflops (for two million particles). If one would use all 2000 GPU’s on the system a
sustained speed of more than 0.4 Petaflops is feasible. This is subject of ongoing present and future
work.

 0.1

 1

 10

 25

 50

 1  2  4  8  16  32

S
p
e
e
d
 
[
T
f
l
o
p
s
]

Processors - NP [GPU]

phi-GPU6 on "Kolob" with Tesla C870

!160 [Gflops/GPU]•NP

    4M

    3M

    2M

    1M

  512K

  256K

  128K

   64K

   32K

   16K

N = 8K

 0.1

 1

 10

 25

 50

 100

 250

 500

 1  2  4  8  16  32  64 128 256 512

S
p
e
e
d
 
[
T
f
l
o
p
s
]

Processors - NP [GPU]

phi-GPU6 on "Laohu" with Tesla C1060

!360 [Gflops/GPU]•NP

    6M

    4M

    2M

    1M

  512K

  256K

  128K

   64K

   32K

   16K

N = 8K

Fig. 1.3 Left: Same benchmark simulations as in Fig. 1.2, but for the Frontier Kolob cluster with
Tesla C870 GPU’s at University of Heidelberg, 6.5 Tflops reached for four million particles on 40
GPU’s. Right: NAOC GPU cluster in Beijing; speed in Teraflops reached as a function of number
of processes, each process with one GPU; 51.2 Tflops sustained were reached with 164 GPU’s (3
nodes with 6 GPU’s were down at the time of testing).

Direct N-body code: phiGPU

Ingo&Berentzen InternaNonal&Symposium&“Computer&SimulaNons&on&GPU” June&1&2011&V&Mainz,&Germany

33

Spurzem, Berczik, Berentzen etal. 2011

100 Tflops on a recent GPU cluster



collision-less particle system
computational scheme : O(N log N) or O(N)

tree method, P3M, FMM
N = 106(galaxy) - 1012(large scale structure)



Collision-less case
• O(N2) algorithm works up to N <100 k
–It is effective to make FP units busy but slow

• High accuracy is not always demanded

• There are faster methods
–O(N log N) methods are

• Particle-Mesh (FFT based)

•Octree method
–Method of choice in many astronomical simulations

–O(N) method

• Fast-Multipole Method



Octree Method
•Approximation method to computer long-

range force
–Systematically replace distant particles with 

multipole-moment(MM) of the particles

• Reduce complexity 1/n for the distant particles



Octree structure
•Recursively sub-divide the space into 

2x2x2 cubes where a particle resides
• Relation between cubes are represented as TREE

R. Castro, T. Lewiner, H. Lopes, G. Tavares and A. Bordignon 4

10000

C

10001

C

10011

X

101

C

110

C

10010

C

11100

C

(a) Adjacent neighbors of node 10011.

10011

1000110

1000011100100110010111100001

1100100

11001011000111

1010010101100010110101110000

(b) Adjacent nodes to 10011 of depth 3.

10000

N

10001

N

10011

X

101

N

110

N

10010

N

11100

N

11101

N

1111001

N

1111000

N

(c) Neighbors of node 10011 in radius 1
2 .

Figure 5: The adjacent neighbors search (a) and inradius neighbors search (c). When searching downward in the adjacency search (case 2),
only the keys of the adjacent children are needed (b).

(a) Direct search. (b) Adjacent neighbors search. (c) Inradius neighbors search.

Figure 6: Illustration of the search procedures in 3D, on an octree adapted to the 34,834 vertices of the bunny point set.

Algorithm 1 find(point p): find the leaf containing p.
1: compute the key kmax of p at maximal depth
2: compute the key k of p at depth l̂ using kmax

3: access the node n corresponding to k in the hash table
// Case 2: n is not a leaf
4: while n exists in the hash table do
5: increase by one the depth of k using kmax

6: access the child of n in the hash table with k
7: end while
8: retrieve the last valid access
// Case 3: n is below the leaf
9: while n does not exist in the hash table do

10: decrease by one the depth of k
11: access the parent of n in the hash table with k
12: end while
13: return n

3 Optimized Search
This work emerged from the following observation (see

Figure 1): since the leaves are the farthest nodes to the root,
why start from the root when looking for a leaf? The answer
for the usual octree representation reduces to: there is no
other way to access a leaf. However, with hashed octrees,
a leaf can be directly accessed by its Morton code, which
depends only on the leaf position and depth. The position
is known when looking for a leaf, but its depth may not. The
following algorithms describe how to retrieve a leaf (or more
generally a node) from its position and an estimated depth l̂.
The next section will describe how to estimate the depth of a
leaf.

(a) Direct Search
The direct search procedure of Algorithm. 1:find is a

straightforward application of this idea: In order to find the
(unique) leaf containing a point p, the algorithm generates
the key kl(p) of p at the estimated depth l = l̂. Looking
for the node nl(p) corresponding to that key, three situations
may occur:

1. The node nl(p) is a leaf: the algorithm thus returns

The corresponding work was published in Computer Graphics Forum, volume 27, number 6, pp. 1557-1566. Blackwell, 2008.



Program Flow of Octree 

1. Construct a tree structure
Tree consist of nodes and particles

2. Walk through the tree and compute the 
MM at each node.

3. For each particle
1.Walk through the tree and check the opening 

criterion

1.If it is particle, compute the force

2.If it is node, compute the force or further walk the children nodes



Reduction of computing
•Distant particles (a node) are replaced 

with its MM



Recursive Tree Walk



Note on Octree 

•At stage 3, we can compute force acting 
on each particle in parallel
–Force calculation by octree is a parallel problem

• Vectorized tree, parallel tree code 

–But stage 1 & 2 is not highly parallel

• these part could be bottleneck



Octree on GPU

•We implement the stage 3 on GPU
–Possible because of highly parallel nature

–Originally it was proposed for vecterization of the tree 
method (Makino 1990)

–It is applicable to any interaction

• Gravity/Coulomb force
• short-range MD force
• Hydrodynamics (SPH) : explained later
• Any algorithm required neighbor particles



Threaded Tree Structure
Convert a recursion to an iteration 



Iterative Tree Walk

See our paper for details
N.Nakasato,  Journal of Computational Science, 2011

doi:10.1016/j.jocs.2011.01.006

http://dx.doi.org/10.1016/j.jocs.2011.01.006
http://dx.doi.org/10.1016/j.jocs.2011.01.006


Flow of Octree on GPU
1. Tree construction

2. Compute MM 

3. Send the tree-data to GPU

4. For each particle (on GPU)
1. Walk the tree and check the opening-criterion

2. Either compute the force or further walking the tree

5. Receive the results from GPU



GPU Programming
•We use OpenCL for implementing the 

octree code on GPU and CPU
• Supported by many devices (CPU,GPU,Cell,DSP)

• Effectively use multi-core on recent CPUs

• Recent SDKs are much more mature than before



Ordering of Particles

•Morton-order to preserve locality of data



Cache friendly ordering

0.37 sec

1.45 sec



O(N2)  vs. O(N log N)

11.0 sec
2.32 sec

0.37 sec



Not only gravity but...

• Ingredient of a galaxy
• DM (gravity)

• Plasma (hydro) 

• Stars condensed from plasma (gravity) 

•To model a realistic galaxy evolution
• We couple gravity and hydro : SPH method

• + radiative cooling + star formation + SN 
explosions + chemical enrichment + ..........



Neighbor interaction
Application to Smoothed Particle Hydrodynamics 

Solving the Euler equation with particles



Summary

•Particle simulations in Astronomy 
involves wide range of timescale

•GPU is now used as replacement to 
special purpose systems (GRAPE)

•GPU is effective to speed-up O(N log N) 
the octree method
• application to the SPH method


