四倍精度専用プロセッサ GRAPE-MPの性能評価 ^{中里直人}(会津大学), 台坂博(一橋大学), 石川正(KEK), 湯浅富久子 (KEK), 牧野淳一郎(東工大)

Agenda

◎ GRAPE-MPの紹介と性能評価 ◎ OpenCLによる四倍精度演算 (preliminary)

高精度演算の手法

◎FP演算器によるソフトウェア実装 ◎ 1演算につき約20回のFP演算が必要 ◎ FMAなしCPUでは1 coreあたり ~ 100 Mflops AMD GPU ~ 30 - 40 Gflops (中里によるテスト) ● NVIDIA GPU ~ 30 Gflops (中田 2011) ●INT演算によるソフトウエア実装

GRAPE-MPの概要 ◎四倍精度演算器をハードウエアで実装 ◎ 独自形式の128 bit 浮動小数点フォーマット GRAPE-DRアーキテクチャを踏襲:SIMD計算器 省メモリアーキテクチャ:演算密度の高い演算向け

- PCI-Expressによりホスト計算機と接続して利用
- Structured ASIC(eASIC)の採用
 - eASICとFPGAは演算粒度は同程度(どちらもLUTを利用)だが、FPGAではLUT間の配線が再構成可能なのに対し、eASICでは配線層が固定されてる。原理的に性能あたりの単価はeASICのほうが安い。一方FPGAではチップの開発コストは必要ない。

GRAPE-MPボード

Control processor
(FPGA by Altera)GRAPE-MP chip[Nextreme NX2500]
(structured ASIC by eASIC)

ホスト計算機からFPGAを介してGRAPE-MPを制御する FPGAにPCI-Express x4 Gen.1を搭載 FPGAのメモリに「プログラム」を保持

• 2 演算 x 100MHz x 6 PE = 1.2 Gflops

• 4 "論理"pipelines x 6 PE = 24 pipelines /chip

Cases an inference in 1967

GRAPE-MPの演算ユニット(PE)

PEのプログラム

。命令は63ビットのマイクロコード

(0)	•	nop if 0
(1)	•	sub?
(2-8)	•	grf_a adr 7 bit
(9-15)	•	grf_b adr 7 bit
(16-22)	•	grf_c adr 7 bit
(23-29)	•	grf_d adr 7 bit
(30-31)	•	TREG adr 2 bit
(32-34)	•	ADD 1st arg : a,b,bm,t,ti
(35-37)	•	ADD 2nd arg : a,b,bm,t,ti
(38-40)	•	MUL 1st arg : a,b,bm,t,ti
(41-43)	•	MUL 2nd arg : a,b,bm,t,ti
(44)	•	RSQ 1st arg : t,ti
(45-46)	•	grf_c write : add, mul, rsq
(47-48)	•	grf_d write : add, mul, rsq
(49-50)	•	treg write : add, mul, rsq
(51)	•	bm out
(52-55)	•	bm mask : 1000 => 0, 1001 => 1, 1010 => 2 etc.
(56-62)	•	bm adr 7 bit (128 words)

eXtended-Double (XD)変数 ☞ GRAPE-MPでの数値フォーマット

¹1bit for sign

ホストでDD/QD to XDなどを変換

場合によってはボトルネックに

。丸め処理はforcel

GRAPE-MP開発の経緯(1)

2008年8月
eASICでのプロセッサ開発の検討(牧野)

- ◎ 三つの設計案を検討(中里, 牧野)
 - ◎ GRAPE-DRを拡張(捨てられているビットを保持)
 - 整数の演算器をたくさん並べる
 - ◎ 128ビット演算器を採用する
- 12月頃に第三案を採用することに決定

GRAPE-MP開発の経緯(2) 2008年12月-2009年1月

◎ 設計にとりかかる(中里)

● HDLでの演算回路とプロセッサの設計とテスト

2009年1月-4月
 1月17日「GRAPE-MP」と命名
 回路設計とシステムソフトなどの実装(中里)
 物理設計担当会社との打ち合わせ(中里, 牧野)

GRAPE-MP開発の経緯(3) 2009年4月 4月30日テープアウト
7月下旬チップが届く

◎ 7月 - 12月

● GRAPE-MPボードの設計(台坂)

アセンブラやシステムソフトの整備(中里)

◎ 2010年4月

◎ GRAPE-MPボードが納品される

GRAPE-MP開発の経緯(4) 2010年4月-

- ◎ FPGA回路の設計とプログラミングインターフェースの実装(台坂,中里)
 - PCI-Expressコアとのインターフェース
 - ループ演算に対応した制御回路の実装
 - エミュレータと実機での動作を統一して扱えるAPIの実装
- この年の後半ころから性能評価をおこなった
 - 重力多体問題
 - ◎ ファインマン積分(二重指数積分)の計算

FPGAによる制御について

GRAPE-MPボードのブロック図

- IO control processor をGRAPE-MP チップから分離
 - MP チップのPE数を最大にするため
 - 開発を簡単にするため

ホストプログラムの概要

- セットアップ(命令列の転送など)
- ◎ 共有メモリへのデータ転送
- ◎ 各PEのレジスタへのデータ転送
- 命令列(カーネル)の実行
 共有メモリからデータをロードし命令列を実行
 共有メモリがつきるまで繰り返し実行
 結果を共有メモリへ書き込み
 結果をホスト側へ転送

$$f_i = \sum_{j=1}^N \frac{m_j(x_i - x_j)}{(|x_i - x_j|^2 + \epsilon^2)^{3/2}}$$

GRAPE-MPアセンブラ プログラミング用にアセンブラを実装 三つ組で書いたコードをマイクロコードに変換 全ての命令はベクトル長4として扱われる

sub bm16v ra0v rb40v sub bm20v ra4v rb44v sub bm24v ra8v rb48v mul rb40v rb40v ra36v mul rb44v rb44v tt add ra36v ts ra32v mul rb48v rb48v tt add ra32v ts tt

1006600214000003	3 0001000000001100110000000000000000000
1106600214800007	/ 000100010000011001100000000000000010000101
120660021500000k	> 0001001000000110011000000000000010101
1306600215800001	E 0001001100000110011000000000000010000101
1406600216000013	3 0001010000001100110000000000000010110
1506600216800017	/ 0001010100000110011000000000000010000101
160660021700001k	> 0001011000000110011000000000000100001
170660021780001f	£ 00010111000001100110000000000000010111
1806600218000023	3 000110000000110011000000000000001000011000
1906600218800027	7 0001100100000110011000000000000001000011000
1a0660021900002k	o 0001101000000110011000000000000000100011001
1b0660021980002f	E 00011011000001100110000000000000010001
7a24000245001	000000000001111010001001000000000000000
7a24000255201	000000000001111010001001000000000000000
7a24000265401	000000000001111010001001000000000000000
7a24000275601	000000000000111101000100100000000000000
3e24000005801	000000000000111110001001000000000000000
3e24040005a01	000000000000111110001001000000000000000
3e24080005c01	000000000000111110001001000000100000000
3e240c0005e01	000000000000111110001001000001100000000
7802000200091	000000000001111000000001000000000000000
7802000210095	000000000001111000000001000000000000000
7802000220099	000000000001111000000001000000000000000
780200023009d	000000000001111000000000000000000000000
3e24000006001	000000000000111110001001000000000000000
3e24040006201	000000000000111110001001000000000000000
3e24080006401	000000000000011111000100100000010000000
3e240c0006601	000000000000011111000100100000011000000
1e0200000081	000000000000011110000000100000000000000
1e02040000085	000000000000011110000000100000100000000

LSUMPプログラミングシステム 総和計算の並列化用DSL GRAPE-MP, GRAPE-DR, GPUなどに対応

◎ 単精度、倍精度、四倍精度をサポート

VARI xi, yi, zi, e2; VARJ xj, yj, zj, mj; VARF ax, ay, az, pt;

dx = xj - xi; dy = yj - yi; dz = zj - zi; r1i = rsqrt(dx**2 + dy**2 + dz**2 + e2); pf = mj*r1i; pt += pf; af = pf*r1i**2; ax += af*dx;

bm_in bm12v ra12v pe0 bm_in bm8v ra8v pe0 bm_in bm4v ra4v pe0 bm_in bm0v ra0v pe0 mov zz ra16v mov zz ra28v mov zz ra24v mov zz ra20v sub bm16v ra0v rb40v sub bm20v ra4v rb44v sub bm24v ra8v rb48v mul rb40v rb40v ra36v mul rb44v rb44v tt add ra36v ts ra32v mul rb48v rb48v tt add ra32v ts tt 11. 10

GRAPE-MPの性能評価

テスト環境

- CPU:Intel Core i7 920 (OC 3GHz)
- MEM: DDR-1333 12GB (1208MHz動作)
- MB: Asus P6T6 WS Revolution (6PCle スロット)
- 6ボードを搭載して性能評価

ファインマン積分

• 41 N³ 演算

ファインマン積分の性能評価

複数ボードでの性能評価

N体計算の性能評価

多倍長演算ハードウエアの例 (2) 泊&平木 (2011) SWoPP'11 八倍精度演算器をFPGAで実装:~ 80 MHz 537 Mflops :POWER7の8 coreの約5倍高速

GRAPE-MPまとめ

四倍精度演算用SIMD型計算機 世界で初めての高精度専用計算機 1ボードあたり1.2 Gflopsの性能 総和演算では有効に利用可能

● 複数ボードでの並列化もスケールする

SGEMM/DGEMM on GPU

Maximum Performance

		System A	System B	
	Variant	Perf. [GFlop/s]	Perf. [GFlop/s]	
DGEMM	$C \leftarrow A^T B + C$	419	467	
	$C \leftarrow AB + C$	417	467	
	$C \leftarrow A^T B^T + C$	418	467	
	$C \leftarrow AB^T + C$	400	466	
SGEMM	$C \leftarrow A^T B + C$	1455	2010	
	$C \leftarrow AB + C$	1436	2010	
	$C \leftarrow A^T B^T + C$	1442	2010	
	$C \leftarrow AB^T + C$	1301	1577	
Matsumoto etal. 201				