
Octree for Particle
Simulations On

Heterogeneous Computers

N.Nakasato
University of Aizu & University of Tsukuba

Agenda

• Introduction to particle simulation in
astronomy

• Octree implementation for heterogeneous
computers

• Application to SPH method

• Summary

Objects in the Universe
star cluster galaxysolar system

Numerical Models in the Universe

star cluster
individual stars

galaxy
blob of stars&DM

solar system
sun&planets

whole universe
blob of DM

We have two classes
of problems
1.  Small N
2.  Lager N

Physical condition

Accelerators: GPU
• Emergent architecture for HPC

•  “parallel computer” on a chip
•  Good for compute intensive app.

Complexity Application Sustained / Peak

O(N3) or more Numerical Integration 100%

O(N2) simple N-Body 90% or more

O(N1.5) Matrix Multiplication 60 – 90%
See HC-4162 for details

O(N log N) Octree method 1 - 2%

O(N) Explicit Hydro code not high in principle

GRAPE-6A (2002)
 fixed function
 30 Gflops (90MHz)
 10W
 200 Myen (2.4 Tflops)
 super energy efficient
GPU (AMD Cypress, 2010)
 programmable
 600 Gflops (850MHz)
 200W
 40,000 yen
 highly cost effective

Collisional Particle System
computational complexity O(N2)

direct summation
need high accuracy

A model of Saturn’s ring : Makino etal. 2002 Figure 13: Distribution of planetesimals at T = 800 (left) and at T = 30400 (right).

This work is supported by the Research for the Future Program of Japan Society for the
Promotion of Science (JSPS-RFTF97P01102).

References

[Aar63] Aarseth Sverre J. (1963) MNRAS 126: 223–255.

[Ha81] Hayashi, C. (1981) Prog. Theor. Phys. Suppl. 70: 35–53.

[HNN85] Hayashi, C., Nakazawa, K. and Nakagawa, Y. (1985) Formation of the solar system.
In Protostars and Planets II (D. C. Black and M. S. Mathews, Eds.), pp. 1100-1153.
Univ. of Arizona Press, Tucson.

[MA93] McMillan S. L. W. and Aarseth S. J. (1993) ApJ 414: 200–212.

[Mak91] Makino J. (1991) PASJ 43: 859–876.

[Mak97] Makino J. (1997) ApJ 478: 58+.

[McM86] McMillan S. L. W. (1986) In Hut P. and McMillan S. (eds) The Use of Supercomputers

in Stellar Dynamics, pages 156–161. Springer, New York.

[MT98] Makino J. and Taiji M. (1998) Scientific Simulations with Special-Purpose Computers

— The GRAPE Systems. John Wiley and Sons, Chichester.

[Sa69] Safronov, V. S. (1969) Evolution of the Protoplanetary Cloud and Formation of the
Earth and the Planets, Nauka, Moscow.

[SCM+90] Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki T., and Umemura M. (1990)
Nature 345: 33–35.

13

phi-GPU6 on Tesla

Spurzem, Berczik, Berentzen etal. 2011

100 Tflops on a recent GPU cluster

Collision-less Particle System
computational scheme : O(N log N) or O(N)

Tree method, P3M, FMM
N = 106(galaxy) - 1012(large scale structure)

We rely on approximation methods to computer long-
range force : Octree method (Barnes&Hut 1986)

–  Systematically replace distant particles with
multipole-moment(MM) of the particles

N.Nakasato, Journal of Computational Science, 2011
doi:10.1016/j.jocs.2011.01.006

Reduction of Computing
•  Distant particles are replaced with its MM (a node)

Flow of Octree Code

1. Construction of tree data
1.  Compute “keys”, sort them and “connect” nodes

2. Compute multipole moments
1.  Center of Mass etc…

3. For each particle (most time consuming)
1. Walk the tree and check the opening-criterion

2. Either compute the force or further walking the tree

Design Consideration
• We need to consider heterogeneous nature of

a compute node for our applications
•  Relative performance of CPU vs. GPU

•  Scalar vs. Vector ratio in vector architecture

• Memory size

•  Bus technology

•  Balanced Interconnect

Our Heterogeneous Systems

E5-2670
8 cores

E5-2670
8 cores

M2090 M2090 M2090 M2090

2090HAP (HA-PACS)
at Tsukuba

PCIe gen.2

i7-3960X
6 cores

Radeon
7970

PCIe gen.3

FX-8150
8 cores

Radeon
7970

PCIe gen.2

7970SB 7970BD
at Aizu

Work Distribution

FX-8150
8 cores

Radeon
7970

1.  Tree construction
1.  Sorting & Linking pointers

2.  Compute MM
3.  For each particle

1. Walking the tree
2. Compute or further walking

Using 8 threads

Using 1 threads

Using many threads

Other Proposals

•  Bedorf, Gaburov, Portegies Zwart (2012)
•  Implement entire octree code in CUDA

•  No need for communications back and forth

•  Drawback is...
•  Tree constcution require atomic operations
•  Paralle tree on GPU is not so effective
•  Tree traversal is based on a stack

•  Offload everything is not always effective

GPU Programming
• We use OpenCL for implementing the octree

code on GPU and CPU
•  Supported by many devices (CPU, GPU, Cell, DSP)
•  Effectively use multi-core on recent CPUs

TABLE I
SYSTEM CONFIGURATIONS USED IN THE PRESENT WORK

Name CPU GPU PCIe SP perf. SDK
2090HAP dual Xeon E5-2670 M2090 x 4 Gen.2.0 x16 5320 NVIDIA
7970SB Core i7-3960X HD7970 Gen.3.0 x16 3789 AMD
7970BD FX-8150 HD7970 Gen.2.0 x16 3789 AMD

APU A6-3650 HD6530D – 284 AMD
HAP dual Xeon E5-2670 – – 666 Intel
OPT dual Opteron 6168 – – 364 AMD

SANDY Core i7-3960X – – 316 Intel
BD FX-8150 – – 230 AMD

C. Update Properties of Cells
For each cells, we need to compute a several properties

used for the force calculation. If we use the tree to compute
gravity force, we need to compute the total mass and the
center of mass of a cell. These properties can be computed
by a recursive depth-first tree traversal. Alternatively, we can
compute them by direct summation for each cell. While the
computational complexity of the recursive algorithm is better
than the direct summation algorithm, it is difficult to parallelize
but the direct summation algorithm is possible to parallelize
easily. By comparing the performance of the two algorithms,
we found the recursive algorithm is faster in a typical case.

After computing the center of mass, we then compute the
trace of the quadrupole moment tensor B2 by directly com-
puting Eq. (2) for each cell. Note that we do not necessarily
to compute B2 for massive cells like the root cell. This is
because those massive cells are almost always not accepted
with the MAC we adopted. We introduce a parameter mlimit

in our algorithm. If the mass of a cell is more massive than
mlimit, we do not compute B2 and set the bounding radius
rb = 2Sroot where Sroot is the size of the root cell. This
apparently large rb makes a massive cell not accepted all the
time. We usually set mlimit a few percent of the total mass.
Note that this treatment introduces any additional error in the
force calculation. With B2 for cells that are less massive then
mlimit, we compute rb with Eq. (1).

D. Optimization of Tree Traversal
In our octree code, we send the following data to OpenCL

device; (1) !r and m of particles and cells (4 × (N + Ncell)
words), (2) rb (N + Ncell words), and (3) next and more
pointers (2×(N+Ncell) words). For the force calculation, rb is
necessary only for cells but we use it to store the gravitational
softening length for particles. And it is not necessary to send
the more pointers for particles since we do not further divide
the particle. But for a simplicity, we set it null value. In total,
we need to send 7× (N +Ncell) words. In the present work,
we use single precision variable so that 1 word is 4 bytes.

After sending the required data to a OpenCL device, we start
the tree traversal on the OpenCL device. We have implemented
the kernel that executes the tree traversal for a particle in our
previous work [33]. A vectorized tree code proposed by [5]

executes the tree traversal for multiple particles. For a group
of particles, they has computed the minimum distance from
the group to cells or a particle and used it for a MAC. Their
definition of the minimum distance is shown in Figure 3 (as
indicated by dmin). We adopted their vectorized algorithm with
a modification. This algorithm makes the tree traversal more
compute intensive. It is an effective optimization technique
for computation on GPU. Suppose we have a group of
nvec particles for the tree traversal. During the traversal, we
encounter a cell for testing the MAC. We fist compute nvec

distances for each pair and then select the actual minimum
distance from nvec distances by binary reduction.

Here, we present the experimental results for the absolute
MAC with different nvec. Figure 4 shows the measured
calculation time on 7970SB system in Table I as a function
of ∆. In this measurement, we have set up a sphere with
uniform density with radius r = 1, total mass M = 1, and
N = 8000 × 1024; roughly 8 M particles. In this figure, the
time is the execution time of the OpenCL kernel; we exclude
the time required for the tree construction and communication
between CPU and GPU. In the regime where ∆ is large, the
calculation time is nearly constant. This is expected from the
fact that rb do not depend on ∆. It is evident that the setting
nvec = 16 is not effective. The setting nvec = 4 is faster
in most case but the setting nvec = 8 outperforms it when
∆ < 0.001. For a small ∆, we also plot the scaling model
∝ ∆−3/4.

Figure 5 shows the relation between ∆ and the average
error in acceleration. The scaling of the average error is easily
estimated in the present work since the local error is bounded
by ∆ as < aerror >∝ ∆0.25 for small ∆. We plot the scaling
model in Figure 5. The average error do not depend on nvec as
expected. Comparing these figures, the setting ∆ ∼ 0.1−0.01
is optimal regarding the tradeoff between the calculation cost
and the accuracy in this particular case. With another particle
distribution, over whole trend is the similar to the uniform
distribution.

E. Support for Multiple Devices
In OTOO, we implemented a scheme that utilize multiple

OpenCL devices. Currently, this feature is mainly tested on
2090HAP system, which has four powerful GPU boards. We

Optimization (1) : Construction

• Create linked-list data structure on CPU
•  Dilated integer
•  Conversion of the Morton key to the PH key

•  Parallel sorting on CPU
•  Computation of the center of mass and multipole

moments

•  All in parallel with OpenMP directives

Optimization (2) : Vectorized

• Tree traversal for multiple particles
•  To make more compute intense
•  But redundant operations

Optimization (3) : Accuracy

 0.1

 1

 10

 100

 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

tim
e

 (
se

c)

Δ

Uniform sphere: N=8000K

VL=1
VL=2
VL=4
VL=8

VL=16
scaling model

Fig. 4. The calculation time with various vector length for the uniform sphere
as a function of the parameter ∆.

 0.001

 0.01

 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

a
ve

ra
g

e
 e

rr
o

r

Δ

Uniform sphere: N=8000K

VL=1
VL=2
VL=4
VL=8

VL=16
scaling model

Fig. 5. The relation between ∆ and the average error in acceleration. The
particle distribution is the same as in Figure 4.

adopt a simple domain decomposition among multiple devices
by assigning a range of particle to a OpenCL device. All
OpenCL devices use the same tree data but each device only
computes the force for particles in a given range. In OTOO,
particles are sorted by their Hilbert keys so that we divide
the N particle into groups with N/PGPU particles where
PGPU is the number of OpenCL devices. With the nature of
the Hilbert order, the particle distribution is fairly localized.
We use OpenMP to control and synchronize PGPU OpenCL
devices.

F. Summary of Optimizations

In Table II, we summarize the parameters that control the
accuracy and the performance of OTOO. We did comprehen-
sive benchmark tests of combinations of those parameters and
obtained the following optimal combination. ∆ controls the

accuracy of the gravity force. Typically, we set ∆ = 0.01 in
non-dimensional unit. Alternatively, we can set ∆ equals a
fraction (∼ 1 %) of the average norm of the gravity force.
ncrit determines the maximum number of particle in a cell.
Larger ncrit, we have shallower tree and shorter computing
time for the tree construction while the computing time of the
tree traversal is longer. ncrit = 16 is a good setting. mlimit

alters the computing time for the tree construction and the tree
traversal. We use separate vector length for gravity and SPH
force calculations as nvecG and nvecS. With nvecG = 4 or 8
and nvecG = 4, the performance is optimal on 2090HAP and
7970SB. PGPU is just a number of OpenCL devices, that are
always GPUs in the present work.

A missing important optimization is how we distribute work
load with PGPU > 1. The simple domain decomposition we
adopted works well at least for the simulations of mergers of
two white dwarf stars. The result will be presented in Section
V. We found no severe load imbalance in this case. This is be-
cause we have used OTOO for at most PGPU = 4. Practically,
it will be not effective to construct a system with PGPU > 4
due to the limited communication bandwidth between CPU
and GPU, e.g. 2090HAP has 80 lanes (PCI Express Gen.3).
When we will parallelize OTOO for multiple heterogenous
nodes, we will need to consider the load balancing in two
levels that are for GPUs and for multi nodes together.

IV. PERFORMANCE TESTS

In this section, we report the performance of OTOO on
various OpenCL devices listed in Table I.

A. Performance of Gravity Simulations
First, we show that the performance of the gravity cal-

culation. Figure 6 shows the elapsed time per a time step
for N = 8 M models. We used two particle distributions:
(a) the Plummer model [47] (left panel) and (b) uniform
sphere (right panel). The Plummer model is consistent with
particle distributions typically appeared in astrophysics while
the uniform sphere represents a distribution usually used in
test of fast multipole method (FMM) implementations [48],
[49]. In each panel, we present the results for 2090HAP,
7970SB and 7970BD. Bars also shows the breakdown in time
spent on the tree construction (red), the execution time of
OpenCL kernel (green) and the data transfer between CPU
and GPU (blue). For 2090HAP, we measured the timing with
PGPU = 1, 2 and 4. In this test, we set ∆ = 0.01, nvecG = 4,
ncrit = 16 and mlimit = 0.05.

The time spent on the tree construction depends on the
performance of CPU, i.e., 2090HAP that has 16 cores took less
than 1 sec for the tree construction while 7970BD with 8 cores
took roughly 1.5 sec. It shows that our parallelization strategy
presented in Section III-B and III-C is effective. Scalability
of the execution of the OpenCL kernel on multiple GPUs
is fairly good. For the Plummer model, 1xM2090, 2xM2090
and 4xM2090 runs took 2.08, 1.16, and 5.13 sec,respectively.
However, the time for communication is not scalable and the
time for the tree construction is nearly constant so that the total

Performance of Gravity

TABLE II
OPTIMIZATION PARAMETERS

description typical value
∆ control force accuracy 0.01 - 0.001 (non-dimensional)

ncrit maximum number of particle in a cell 8 - 32
mlimit limit mass for B2 0.01 - 0.05 of the total mass
nvecG vectorization factor for gravity 1 - 8
nvecS vectorization factor for SPH 1 - 4
PGPU number of OpenCL devices 1 - 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1x M2090

2x M2090

4x M2090

7970SB

7970BD

tim
e

(s
ec

)

Plummer N = 8000K

TREE
KERNEL

PCIe

1x M2090

2x M2090

4x M2090

7970SB

7970BD

Uniform N = 8000K

TREE
KERNEL

PCIe

Fig. 6. The left and right panels show the measured time of the gravity
calculation on different system configurations for two particle distributions.
The labels TREE, KERNEL, PCIe show the breakdown in time spent on CPU
(mainly tree data), OpenCL kernel on GPU, and the data transfer between
CPU and GPU, respectively. The configurations are presented in Table I. We
put the labels “1x”, “2x” and “4x” that represent PGPU used in the 2090HAP
system.

execution time shows modest scaling. For the communication
time, the effectiveness of PCI Express Gen.3 is clear; only
7970SB fully supports Gen.3 and it took 0.1 sec for the com-
munication while 7970BD with the same GPU in Gen.2 mode
took 0.3 sec. Although 2090HAP system supports Gen.3, it is
currently working in Gen.2 mode with M2090 GPU boards. To
take advantage of multiple GPU devices, it will be necessary
to adopt a newer GPU in HA-PACS.

B. Performance Comparison of OpenCL and CUDA
On NVIDIA system, both CUDA and OpenCL is supported

as a programming model. CUDA is proprietary technology
only available on GPUs by NVIDIA while OpenCL is an open
and a standard programming model. Practically, there is little
fundamental difference between two programming models.
However, a current limitation of OpenCL runtime for NVIDIA
Fermi architecture is that we can not configure the size of L1
cache memory from the default size of 16KB to 48KB. Since
our tree walk algorithm relies on the effectiveness of the cache
memory system, it is critical for the performance of OTOO.

In addition to OTOO, we are independently implementing a
CUDA enabled tree code for the Fermi architecture so that we
compare the performance of the same tree algorithm on both
programming model. To see the effectiveness of the cache,
we did the following steps; (1) we construct required tree
data with OTOO for an uniform and the Plummer particle
distributions. (2) we made OTOO and the CUDA-enabled tree
code loading exactly the same tree data. (3) we measured the
execution time of OTOO and the CUDA enabled code with
the same tree traversal algorithm. We did the measurement on
2090HAP and 7970SB. In this test, we set ∆ = 0.01, nvecG =
4, ncrit = 16 and mlimit = 0.05. For the measurement on
2090HAP, we only used one GPU board and measured the
performance of CUDA with the cache size of 16KB and 48KB.
The version of CUDA is 4.0.17. Figure 7 and 8 present the
performance of OTOO and the CUDA enabled tree code.

As expected, the performance of the CUDA enabled code
depends on the size of cache in both particle distributions.
With the Plummer model N = 8M, the runs with 16KB
and 48KB took 3.61 and 2.70 sec, respectively. OTOO that
presumably uses 16KB configuration took 2.08 sec. With
the uniform distribution N = 8M, the runs with 16KB and
48KB cache size, and OTOO took 1.94, 1.46, and 1.52 sec,
respectively. Note that the particle distribution of the Plummer
model is more extended Rmax ! 1 while the particles in
the uniform distribution are localized Rmax = 1 where Rmax

is the maximum radius of distribution. Due to this nature
of two particle distributions, the performance of OTOO with
the Plummer model is even better than the run with 48KB.
As a comparison, the performance of OTOO on 7970SB is
much better than 2090HAP. To summarize, there is no big
performance gap between OpenCL and CUDA programming
models but it will be preferable to enable a large L1 cache
configuration with NVIDIA OpenCL SDK.

C. Performance of Gravity+SPH runs
Finally, we present the performance of runs with combined

gravity and SPH calculations. We did a standard test of SPH
code so-called “Cold Collapse Test” [50], [51]. We set up an
isothermal sphere with ρ ∝ r−2 distribution. The temperature
of the sphere is cold so that it collapses due to self-gravity
and eventually produces shock bound. Here, we only report
the performance of the runs till t = 0.5 before the shock
bounce occurs but we have checked that the later evolution

•  Results on 2090HAP
•  Multi GPU is scalable
•  2 sec by 4 GPU

•  Results on 7970SB
•  1.5 sec by 1 GPU
•  PCIe v3.0 is effective

Comparison : Gravity
• Our code: 0.16 sec on 7970 for N = 1M

• We do not use a stack!

• Other tree/FMM code using a stack
•  Bedorf, Gaburov, Portegies Zwart (2012)

•  Tree 0.5 sec C2050 for N = 1M

•  Yokota & Barba (2012)
•  FMM 1.0 sec with GT590 for N = 1M

Not only Gravity but...
• Want to model a merger of two stars

To answer fundamental questions in the universe

Observation of Ia Super Novae
Awarded Nobel Prize

in Physics 2011

Application to SPH method
SPH is solving the Euler equation with particles

We need neighbor interactions

With the same octree, we compute the summation on GPU

Simulations…
• We model the merging of White Dwarf stars

•  Very dense stars as a final stage of our Sun…

• Physics we need to model
•  Hydrodynamics of high density plasma

•  Gravity

•  Nuclear reactions (possibly)

N = 4M Particles Model

A Simulation of the merger
low resolution model N ∼ 40, 000. [28] used N ∼ 1, 000, 000
particles and [27] used N ∼ 1, 800, 000 particles. We did a
production run for our work with N = 4, 096, 000 that is a
largest simulation in similar modelings. For this run, we set
∆ = 0.01, nvecG = nvecS = 4, ncrit = 16 and mlimit = 0.025.
Figure 10 shows a snapshot of the run showing temperature
distribution at the orbital plane.

This run took 246 hours on 2090HP with 4GPU con-
figuration. It required 251243 integration steps so that the
average execution time per a step is 3.53 sec. We measured
the performance of the same run on 7970SB that is the
configuration with a latest GPU. The average execution time is
3.20 sec with the standard g++ 4.4.3. With Intel icpc 12.1.3, we
obtained the slightly better result of 2.52 sec. After inspecting
the timing results, we found that the performance gap is due to
the difference in the efficiency of parallel regions by OpenMP.
Very roughly, the gravity calculation requires 8×109 particle–
particle interactions and the SPH calculation requires 3× 108

particle–particle interactions. The gravity and SPH interactions
need 20 and 200 flops so that the effective performance of
2090HP with 4GPU is ∼ 60 Gflops and that of 7970SB
∼ 90 Gflops. For the run on 7970SB compiled with Intel
icpc, the time spent on CPU and GPU for the 7970SB run is
1.11 and 1.41 sec, respectively. Accordingly, we note that the
effective performance of the computations on GPU is faster
than the above performance estimated from the total running
time. Notably, computationally dominant steps on CPU are the
steps 2 and 5 that took 0.34 and 0.54 sec, respectively. In the
step 5, we compute pressure and temperature of each particles
by interpolating large EOS tables. We will need additional
optimizations for those steps for further enhancing the total
performance.

Our results show that OTOO is already usable for produc-
tion runs. Even with single node, the performance of OTOO
on 2090HAP and 7970SB is competitive in comparison with
all other recent work that were presumably computed on a
MPP with multiple nodes. We will use OTOO to investigate
the outcome of mergers of two white dwarf stars.

VI. DISCUSSION AND SUMMARY

In the present paper, we report the optimization strategy and
detailed techniques adopted in a simulation code OTOO for
heterogenous CPU-GPU systems. A novel part of our work
is that we only use a OpenCL device for tree traversal. In
an implementation of a tree code on GPU [39], they have
proposed to construct the tree structure on GPU. A reason to
do so is that it is possible to run entire tree code, i.e., tree
construction, update the properties of cells, and force calcu-
lation, on GPU without intervention by CPU. The reported
performance by [39] is not competitive with our performance.
And this approach is not effective when we would like to
parallelize the code for a GPU cluster. In [48], they have
reported an implementation of FMM on a heterogenous CPU-
GPU cluster. The performance with the expansion order p = 4
using NVIDIA C2050 took 0.37 sec for a N = 1 M run while
OTOO on 7970SB took 0.163 sec for N = 1 M uniform

Fig. 10. A snapshot of the merger of two white dwarf stars on 2090HAP
with 4GPU configuration.

sphere. In [49], they have proposed the hybrid FMM and tree
code and reported that a run with p = 5 on NVIDIA GTX590
(dual GPU boards) took roughly 1 sec for a N = 1 M run.
Note that all those related codes have adopted the stack-based
tree traversal that is not effective in our opinion. We believe
that our algorithm is faster and more flexible since the linked-
list structure can handle any complex tree structure not limited
to the octree.

We also shown that support of multiple OpenCL devices
in OTOO is effective. We did production runs of mergers of
two white dwarf stars on a recent GPU centric heterogenous
cluster HA-PACS with 4GPU configurations. We found that
OTOO shows good scalability on these production runs. As
far as we know, OTOO is a first practical SPH simulation
code for astrophysics taking advantage of GPU. We plan to
extend OTOO to support parallel runs on multiple nodes. An
advantage of a heterogenous CPU-GPU system for large scale
parallel runs is that we require less number of nodes (or MPI
processes) for a given problem size due to acceleration gained
by GPU. An important consideration for that extension is that
since it takes relatively long time to construct tree than the
gravity and SPH calculations, we will also need to rethink
a parallel tree algorithm. The conventional algorithm called
locally essential tree [36] that builds a global but pruned tree
on each node will not be effective to our proposed tree method.
We will investigate the parallel tree code for a heterogenous
CPU-GPU system in future work.

REFERENCES

[1] J. Barnes and P. Hut, “A Hierarchical O(NlogN) Force-Calculation
Algorithm,” Nature, vol. 324, pp. 446–449, Dec. 1986.

[2] J. G. Jernigan and D. H. Porter, “A tree code with logarithmic reduction
of force terms, hierarchical regularization of all variables, and explicit
accuracy controls,” Astrophysical Journal Supplement, vol. 71, pp. 871–
893, Dec. 1989.

[3] L. Hernquist, “Vectorization of tree traversals,” Journal of
Computational Physics, vol. 87, no. 1, pp. 137–147, 1990. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6WHY-
4DF4Y9P-30/2/517272c3606e0aa151ec1fb58f3b4d0e

•  Results on 2090HAP
•  3.53 sec by 4GPU (g++)
•  Scalable

•  Results on 7970SB
•  3.20 sec by 1GPU (g++)
•  2.52 sec by 1 GPU (icpc)
•  GPU 1.41 sec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

tim
e

 (
se

c)

N

Plummer Model

P M2090 CUDA L1 16KB
P M2090 CUDA L1 48KB

P M2090 OpenCL
P 7970 OpenCL

Fig. 7. Comparison of the performance of CUDA and OpenCL with the
Plummer particle distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

tim
e

 (
se

c)

N

Uniform Nodel

U M2090 CUDA L1 16KB
U M2090 CUDA L1 48KB

U M2090 OpenCL
U 7970 OpenCL

Fig. 8. Comparison of the performance of CUDA and OpenCL with uniform
particle distributions

obtained by OTOO is correct. In this test, we set ∆ = 0.01,
nvecG = nvecS = 4, ncrit = 16 and mlimit = 0.05.

Figure 9 shows the execution time per a time step as
function of N . We have tested all systems listed in Table I. In
all cases, the scaling on N is roughly O(N). And the more
peak performance, the execution time is shorter. Systems with
GPU shows relatively better performance than systems with
only CPU. We found that the heterogenous APU is competitive
in comparison to systems with high-end multi-core CPUs such
as SB (6 cores), HAP(16 cores) and OPT (24 cores). The
fastest system is 7970SB, on which it took less than 1 sec
with N = 2M run. It is shown that OTOO is a practical tool
for astrophysical modeling on various systems that support
OpenCL programming model. We will next show a result of
production runs using OTOO.

 0.1

 1

 10

 100000 1e+06

tim
e

 (
se

c)

N

SPH + Gravity : Cold Collapse

1x2090HAP
7970SB
7970BD

APU
OPT

SB
HAP

Fig. 9. The execution time of gravity+SPH runs on various systems listed
in Table I. In “1x2090HAP”, we only use one M2090 GPU board.

V. SIMULATION OF A MERGER OF TWO WHITE DWARF
STARS

As an complex application, we have computed the evolution
of a merger of two white stars with OTOO. To model the
evolution of mergers, we implemented the following two
modifications to a standard SPH method that we have adopted
in our previous code [34]. First, we changed the treatment
of artificial viscosity to minimize numerical effects according
to the hybrid scheme proposed by [52]. They have combined
a sheer-free viscosity term [53] with time dependent viscos-
ity parameters [54]. Second, we adopted the HELMHOLTZ
equation of state (EOS) [55]. With this EOS routine, we could
calculate thermodynamic quantities as function of temperature,
density and chemical composition for mixture of plackian
photons, an ideal gas of ions, an electron-positron gas with an
arbitrary degree of relativity and degeneracy. Here, we assume
chemical composition of white dwarf stars is 50 % of carbon
and 50 % of oxygen. Furthermore, we have used 2D Hermite
interpolation for the HELMHOLTZ EOS. Initial white dwarf
models were constructed with a description presented in [56].

An integration step for a merger process proceed as follows;
(1) prediction of !r etc., (2) construct the tree structure, (3)
update the cell properties for SPH using Eq. (5), (4) tree
traversal for the first stage of SPH by OpenCL, (5) compute
EOS on host, (6) tree traversal for the second stage of SPH by
OpenCL, (7) update the cell properties for gravity using Eq.
(1), (8) tree traversal for gravity by OpenCL, (9) correction of
!r etc.

Except Steps 4, 6, and 8, all steps are executed on CPU with
parallel computation as much as possible. The steps 1 and 9
deal with the integration of particles where we adopt the leap-
frog integration scheme. In the step 4 of SPH, we compute
density and divergence and rotation of velocity etc. In the
step 6 of SPH, we SPH force and time derivative of energy.
In recent results, [26] did a comprehensive survey but with a

SPH & Gravity Benchmark

Summary
• Our Octree code successfully and effectively

solve astrophysical particle models
•  4M model of two white dwarf stars on 4GPU system

• OpenCL works great on many systems
• Multiple OpenCL devices scale well

• Optimal work distribution is a key

 preprint http://arxiv.org/abs/1206.1199

