
A Compiler for High Performance

Computing with Many-core

Accelerators

N.Nakasato (University of Aizu, Japan)

J.Makino (National Astronomical Observatory, Japan)

No.2

Agenda

• Problem description

– Astronomical Particle Simulations

• Our Approach

• Performance evaluation

• Summary

No.3

Astronomical Particle Simulation

• Simulate evolution of the universe

– As a collection of particles

– Depending on scale, each particle represents

• Galaxy

• Star

• Asteroid

• Gas blob etc.

– Particles are interacting

• Mainly by gravity

– Long-range force

No.4

Grand Challenge Problems

No.5

Grand Challenge Problems

• Simulations with very huge N

– How is mass distributed in the Universe?

• One big run with N ~ 109-12

– Scalable on a simple big MPP system

• Limited by memory size

• Modest N but complex physics

– Precise modeling of formation of astronomical

objects like galaxy, star, solar system.

– Need many runs with N ~ 106-7

No.6

Cluster Configuration

Number of nodes

S
p

ee
d

 o
f

a
 n

o
d

e

Big MPP cluster

for Large N problems

Cluster with accelerators

for Modest N problems

No.7

Numerical Modeling

• Solve ODE for many particles

where f is gravity, hydro force etc…

• Two main problems

– How to integrate the ODE?

– How to compute RHS of ODE?

• We will use accelerators for this part

N

j

ji
i rrf

dt

vd

1

)(

No.8

A simple way to compute RHS

• Compute force summation as

– Each s[i] can be computed independently

• Massively parallel if N is large

• Given i & j, each f(x[i],x[j]) can be computed

independently if f() is complex

No.9

Unrolling (vectrization)

• Parallel nature enable us to unroll the

outer-loop in n-ways

– Two types of variables

• x[i] and s[i] are unchanged during j-loop

• x[j] is shared at each iteration

– Map computation for each x[i] to PE on

accelerators

No.10

Using Many-core Accelerators

• To use accelerators, need two programs

– A program running on host

– A program running on accelerators

• Compute kernel

• Example

– C for CUDA / Brook+

• Host program in C++

• Compute kernel in extended C+ +

– Function with appropriate keyword

– Separate source code

No.11

GRAPE-DR

Ranked at 277th on TOP500

Ranked at 5th on Green500

One Chip:

512 PEs

Running at 400 MHz

8x PCI-E gen1

288 MB

Consume ~ 50 W

No.12

Many-core Accelerators

• Both GRAPE-DR and R700 GPU

– DP performance > 200 GFLOPS

– Have many local registers : 72/256 words

– Resource sharing in SP and DP units

But different in

• R700 has more complex VLIW

stream cores

• R700 has no BM

• R700 has faster memory I/O

•DR has reduction network for

efficient summation

No.13

Our Approach

• Ask user to specify

– Which part of a code is in parallel

– In addition, what nature of each variables

– Write that information in DSL

• Then, our compiler generates an code by

using predetermined optimization

techniques

– This is dependent on a problem

– Current one is only for the particle summation

No.14

Usage Model (1)

• Original source code of particle simulations

… initialization …

while(t <= t_end) {

… predict …

for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {

f[i] += force(x[i], x[j]);

}

}

… update …

t = t + dt;

}

… finalization …

Where the part to

be able to compute

in parallel

No.15

Usage Model (2)

• User write a source in DSL such as

– Our compiler generates optimized machine

code for GPU / GRAPE-DR

No.16

Usage Model (3)

• And also generates APIs as library to

send/receive data and control the

accelerator

… initialization…

while(t <= t_end) {

… predict ..

send_data(n, x);

execute_kernel(n);

receive_data(n, f);

… update …

t = t + dt;

}

… finalization …

Where a user replaces the nested

loop with call to APIs and link the

code with the generated library

No.17

Features

• Accelerates force summation loop

• Support two accelerators

– R700 architecture GPU

– GRAPE-DR

• Developed by JM etal.

• Precision controllable

– Single, Double, & Quadruple precision

• QP through DD emulation techniques

– Partially support mixed precision

No.18

Our Compiler

• Written in C++

– Prototype was developed in Ruby

• We use following software/library

– Boost sprit for the parser

– Low Level Virtual Machine for the optimizer

– Google template library for the code

generators

No.19

Source code source.llvm

LLVM code

optimizer

frontend

opt.llvmDR code gen.

source.vsm GPU code gen.

DR assembler

micro code for DR

source.il RV770 code gen.

VLIW instructions for RV770

Compiler Flow

(device driver)

http://galaxy.u-aizu.ac.jp/trac/note/

No.20

Example 1 : N-body

• Simple softened gravity

No.21

Optimization on GPU

~ 300 Gflops

~ 500 Gflops

~ 700 Gflops

No.22

Performance of O(N2) algorithm

•4-way unrolling on R700 GPU

•Array of structure

•4-vector SIMD in most efficient

•Fastest with one GPU

•38 operations per interactions

No.23

Example 2: Feynman-loop integral

LMEM xx, yy, cnt4;
BMEM x30_1, gw30;
RMEM res;
CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +

(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;
res += gw30/d**2;

No.24

Performance of QP operations

• Computation of Feynman-loop integral

– elapsed time in QP operations

– CPU ~ 80 Mflops

– R700 GPU ~ 6.43 – 7.57 Gflops

– GRAPE-DR ~ 2.67 – 5.46 Gflops

• Tow reasons why QP is so fast

– High compute density

– DR & R700 are register rich

No.25

Example 3: Mixed Precision

• High accuracy integration needs high

accuracy in distance and summation

No.26

Mix Precision Example

• Add declaration lines to specify precision

of variables

• Performance of the Hermite scheme
• 4-th order integration scheme

– 6.31 GFLOPS with QP

– 27.8 GFLOPS with mixed precision (4x gain)

• With negligible integration error compared to QP

IMPLICIT REAL8;
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;
REAL16 xi, yi, zi, xj, yj, zj, ax, ay, az;

No.27

Comparison

• Our approach is in between two

conventional approaches

– Automatic parallel compiler

• A user just feed an existing source code

• But not effective in general

– Let-users-do-everything-type compiler

• C for CUDA, OpenCL, Brook+ etc.

• A user have to specify every details of

– Memory layout and its movement

– SIMD operations

– Threads management on GPU

No.28

Conclusion

• Many-core accelerators are effective in

astronomical/astrophysical N-body

simulations

– But how to program?

• We have constructed a compiler for many-

core accelerators

– That accelerate force-calculation-loop

– Features simplicity and controllable precision

• Planed Extension

– Support O(N log N) method on GPU

