A Compiler for High Performance Computing with Many-core Accelerators

N.Nakasato (University of Aizu, Japan)
J.Makino (National Astronomical Observatory, Japan)
Agenda

- Problem description
 - Astronomical Particle Simulations
- Our Approach
- Performance evaluation
- Summary
Astronomical Particle Simulation

• Simulate evolution of the universe
 – As a collection of particles
 – Depending on scale, each particle represents
 • Galaxy
 • Star
 • Asteroid
 • Gas blob etc.
 – Particles are interacting
 • Mainly by gravity
 – Long-range force
Grand Challenge Problems

The APM Galaxy survey
Maddox Sutherland Efstathiou & Loveday

Hickson Compact Group 40
Subaru Telescope, National Astronomical Observatory of Japan
January 28, 1999
Grand Challenge Problems

• Simulations with very huge N
 – How is mass distributed in the Universe?
 • One big run with $N \sim 10^{9-12}$
 – Scalable on a simple big MPP system
 • Limited by memory size

• Modest N but complex physics
 – Precise modeling of formation of astronomical objects like galaxy, star, solar system.
 – Need many runs with $N \sim 10^{6-7}$
Cluster Configuration

Number of nodes

Speed of a node

Cluster with accelerators for Modest N problems

Big MPP cluster for Large N problems
Numerical Modeling

• Solve ODE for many particles

\[\frac{d\vec{v}_i}{dt} = \sum_{j=1}^{N} f (\vec{r}_i - \vec{r}_j) \]

where \(f \) is gravity, hydro force etc…

• Two main problems
 – How to integrate the ODE?
 – How to compute RHS of ODE?

 • We will use accelerators for this part
A simple way to compute RHS

- Compute force summation as

```plaintext
for i = 0 to N-1
    s[i] = 0
    for j = 0 to N-1
        s[i] += f(x[i], x[j])
```

Fig. 1. A simple nested loop to computer a general force calculation.

- Each s[i] can be computed independently
 - Massively parallel if N is large
 - Given i & j, each f(x[i],x[j]) can be computed independently if f() is complex
Unrolling (vectorization)

- Parallel nature enable us to unroll the outer-loop in n-ways

```plaintext
for i = 0 to N-1 each 4
    s[i] = s[i+1] = s[i+2] = s[i+3] = 0
for j = 0 to N-1
    s[i] += f(x[i], x[j])
    s[i+1] += f(x[i+1], x[j])
    s[i+2] += f(x[i+2], x[j])
    s[i+3] += f(x[i+3], x[j])
```

- Two types of variables
 - $x[i]$ and $s[i]$ are unchanged during j-loop
 - $x[j]$ is shared at each iteration
- Map computation for each $x[i]$ to PE on accelerators
Using Many-core Accelerators

- To use accelerators, need two programs
 - A program running on host
 - A program running on accelerators

 - **Compute kernel**

- **Example**
 - C for CUDA / Brook+
 - Host program in C++
 - Compute kernel in extended C++
 - Function with appropriate keyword
 - Separate source code
GRAPE-DR

One Chip:
512 PEs
Running at 400 MHz
8x PCI-E gen1
288 MB
Consume ~ 50 W

Ranked at 277th on TOP500
Ranked at 5th on Green500
Many-core Accelerators

- Both GRAPE-DR and R700 GPU
 - DP performance > 200 GFLOPS
 - Have many local registers: 72/256 words
 - Resource sharing in SP and DP units

But different in
- R700 has more complex VLIW stream cores
- R700 has no BM
- R700 has faster memory I/O
- DR has reduction network for efficient summation
Our Approach

- Ask user to specify
 - Which part of a code is in parallel
 - In addition, what nature of each variables
 - Write that information in DSL

- Then, our compiler generates an code by using predetermined optimization techniques
 - This is dependent on a problem
 - Current one is only for the particle summation
Usage Model (1)

- Original source code of particle simulations

```java
... initialization ...
while(t <= t_end) {
    ... predict ...
    for(i = 0; i < n; i++) {
        for(j = 0; j < n; j++) {
            f[i] += force(x[i], x[j]);
        }
    }
    ... update ...
    t = t + dt;
}
... finalization ...
```

Where the part to be able to compute in parallel
Usage Model (2)

- User write a source in DSL such as

```
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;

dx = xj - xi;
dy = yj - yi;
dz = zj - zi;

r1i = rsqrt(dx**2 + dy**2 + dz**2 + e2);
af = mj*r1i**3;

ax += af*dx;
ay += af*dy;
az += af*dz;
```

- Our compiler generates optimized machine code for GPU / GRAPE-DR
Usage Model (3)

• And also generates APIs as library to send/receive data and control the accelerator

```java
... initialization...
while(t <= t_end) {
  ... predict..
  send_data(n, x);
  execute_kernel(n);
  receive_data(n, f);
  ... update ...
  t = t + dt;
}
... finalization ...
```

Where a user replaces the nested loop with call to APIs and link the code with the generated library.
Features

• Accelerates force summation loop

• Support two accelerators
 – R700 architecture GPU
 – GRAPE-DR
 • Developed by JM et al.

• Precision controllable
 – Single, Double, & Quadruple precision
 • QP through DD emulation techniques
 – Partially support mixed precision
Our Compiler

• Written in C++
 – Prototype was developed in Ruby

• We use following software/library
 – Boost sprit for the parser
 – Low Level Virtual Machine for the optimizer
 – Google template library for the code generators
Compiler Flow

Source code → frontend → source.llvm

- DR code gen. → source.vsm → DR assembler → micro code for DR
- opt.llvm → LLVM code optimizer → source.il
- GPU code gen. → source.il → RV770 code gen. → (device driver) → VLIW instructions for RV770

http://galaxy.u-aizu.ac.jp/trac(note/)
Example 1: N-body

- Simple softened gravity

\[f_i = \sum_{j=1}^{N} \frac{m_j (x_i - x_j)}{(|x_i - x_j|^2 + \epsilon^2)^{3/2}}, \]

LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;

dx = xj - xi;
dy = yj - yi;
dz = zj - zi;

rli = rsqrt(dx**2 + dy**2 + dz**2 + e2);
af = mj*rli**3;

ax += af*dx;
ay += af*dy;
az += af*dz;
Optimization on GPU

\begin{verbatim}
for i = 0 to N-1
acc[i] = 0
for j = 0 to N-1
 acc[i] += f(x[i], x[j])
\end{verbatim}

\begin{verbatim}
for i = 0 to N-1 each 4
acc[i] = acc[i+1] = acc[i+2] = acc[i+3] = 0
for j = 0 to N-1
 acc[i] += f(x[i], x[j])
 acc[i+1] += f(x[i+1], x[j])
 acc[i+2] += f(x[i+2], x[j])
 acc[i+3] += f(x[i+3], x[j])
\end{verbatim}

\begin{verbatim}
for i = 0 to N-1 each 4
acc[i] = acc[i+1] = acc[i+2] = acc[i+3] = 0
for j = 0 to N-1 each 4
 for k = 0 to 3
 acc[i] += f(x[i], x[j+k])
 acc[i+1] += f(x[i+1], x[j+k])
 acc[i+2] += f(x[i+2], x[j+k])
 acc[i+3] += f(x[i+3], x[j+k])
\end{verbatim}

\(~300\) Gflops
\(~500\) Gflops
\(~700\) Gflops
Performance of $O(N^2)$ algorithm

- 4-way unrolling on R700 GPU
- Array of structure
 - 4-vector SIMD in most efficient
- Fastest with one GPU
 - 38 operations per interactions
Example 2: Feynman-loop integral

\[I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz F(x, y, z), \]

\[F(x, y, z) = D(x, y, z)^{-2} \]

\[D = -xys - tz(1 - x - y - z) + (x + y)\lambda^2 + (1 - x - y - z)(1 - x - y)m_e^2 + z(1 - x - y)m_f^2. \] (2)

LMEM xx, yy, cnt4;
BMEM x30_1, gw30;
RMEM res;
CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 + (one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;
res += gw30/d**2;
Performance of QP operations

• Computation of Feynman-loop integral
 – elapsed time in QP operations

<table>
<thead>
<tr>
<th></th>
<th>$N = 256$</th>
<th>$N = 512$</th>
<th>$N = 1024$</th>
<th>$N = 2048$</th>
<th>clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPE-DR</td>
<td>0.21</td>
<td>1.21</td>
<td>7.83</td>
<td>55.1</td>
<td>380</td>
</tr>
<tr>
<td>RV770</td>
<td>0.09</td>
<td>0.66</td>
<td>5.03</td>
<td>39.7</td>
<td>750</td>
</tr>
<tr>
<td>Core i7</td>
<td>7.39</td>
<td>59.0</td>
<td>472</td>
<td></td>
<td>2670</td>
</tr>
</tbody>
</table>

– CPU ~ 80 Mflops
– R700 GPU ~ 6.43 – 7.57 Gflops
– GRAPE-DR ~ 2.67 – 5.46 Gflops

• Tow reasons why QP is so fast
 – High compute density
 – DR & R700 are register rich
Example 3: Mixed Precision

- High accuracy integration needs high accuracy in distance and summation

```c
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;

dx = xj - xi;
dy = yj - yi;
dz = zj - zi;

r1i = rsqrt(dx**2 + dy**2 + dz**2 + e2);
af = mj*r1i**3;

ax += af*dx;
ay += af*dy;
az += af*dz;
```
Mix Precision Example

• Add declaration lines to specify precision of variables

 IMPLICIT REAL8;
 LMEM xi, yi, zi, e2;
 BMEM xj, yj, zj, mj;
 RMEM ax, ay, az;
 REAL16 xi, yi, zi, xj, yj, zj, ax, ay, az;

• Performance of the Hermite scheme
 • 4-th order integration scheme
 – 6.31 GFLOPS with QP
 – 27.8 GFLOPS with mixed precision (4x gain)
 • With negligible integration error compared to QP
Comparison

• Our approach is in between two conventional approaches
 – Automatic parallel compiler
 • A user just feed an existing source code
 • But not effective in general
 – Let-users-do-everything-type compiler
 • C for CUDA, OpenCL, Brook+ etc.
 • A user have to specify every details of
 – Memory layout and its movement
 – SIMD operations
 – Threads management on GPU
Conclusion

• Many-core accelerators are effective in astronomical/astrophysical N-body simulations
 – But how to program?

• We have constructed a compiler for many-core accelerators
 – That accelerate force-calculation-loop
 – Features simplicity and controllable precision

• Planed Extension
 – Support O(N log N) method on GPU