A Compiler for High Performance Computing with Many-core Accelerators

N.Nakasato (University of Aizu, Japan) J.Makino (National Astronomical Observatory, Japan)

Agenda

No.2

- Problem description
 - Astronomical Particle Simulations
- Our Approach
- Performance evaluation
- Summary

Astronomical Particle Simulation

- Simulate evolution of the universe
 - As a collection of particles
 - Depending on scale, each particle represents
 - Galaxy
 - Star
 - Asteroid
 - Gas blob etc.
 - Particles are interacting
 - Mainly by gravity
 - Long-range force

Grand Challenge Problems

The APM Galaxy survey Maddox Sutherland Efstathiou & Loveday

Hickson Compact Group 40 Subaru Telescope, National Astronomical Observatory of Japan CISCO (J & K') January 28, 1999

No.4

Grand Challenge Problems

- Simulations with very huge N
 - How is mass distributed in the Universe?
 - One big run with N ~ 10^{9-12}
 - Scalable on a simple big MPP system
 - Limited by memory size
- Modest N but complex physics

 Precise modeling of formation of astronomical objects like galaxy, star, solar system.

– Need many runs with N ~ 10^{6-7}

Number of nodes

Numerical Modeling

Solve ODE for many particles

$$\frac{d\vec{v}_i}{dt} = \sum_{j=1}^N \vec{f}(\vec{r}_i - \vec{r}_j)$$

where f is gravity, hydro force etc...

- Two main problems
 - How to integrate the ODE?
 - How to compute RHS of ODE?
 - We will use accelerators for this part

A simple way to compute RHS

Compute force summation as

```
for i = 0 to N-1
s[i] = 0
for j = 0 to N-1
s[i] += f(x[i], x[j])
```

Fig. 1. A simple nested loop to computer a general force calculation.

- Each s[i] can be computed independently

- Massively parallel if N is large
- Given i & j, each f(x[i],x[j]) can be computed independently if f() is complex

Unrolling (vectrization)

 Parallel nature enable us to unroll the outer-loop in n-ways

```
for i = 0 to N-1 each 4
s[i] = s[i+1] = s[i+2] = s[i+3] = 0
for j = 0 to N-1
s[i] += f(x[i], x[j])
s[i+1] += f(x[i+1], x[j])
s[i+2] += f(x[i+2], x[j])
s[i+3] += f(x[i+3], x[j])
```

- Two types of variables

- x[i] and s[i] are unchanged during j-loop
- x[j] is shared at each iteration

Map computation for each x[i] to PE on accelerators

Using Many-core Accelerators

- To use accelerators, need two programs
 - A program running on host
 - A program running on accelerators
 - Compute kernel
- Example
 - C for CUDA / Brook+
 - Host program in C++
 - Compute kernel in extended C++
 - Function with appropriate keyword
 - Separate source code

GRAPE-DR

One Chip: 512 PEs Running at 400 MHz 8x PCI-E gen1 288 MB Consume ~ 50 W

Ranked at 277th on TOP500 Ranked at 5th on Green500

Many-core Accelerators

- Both GRAPE-DR and R700 GPU
 - DP performance > 200 GFLOPS
 - Have many local registers : 72/256 words
 - Resource sharing in SP and DP units

But different in • R700 has more complex VLIW stream cores • R700 has no BM

• R700 has faster memory I/O
•DR has reduction network for efficient summation

Our Approach

- Ask user to specify
 - Which part of a code is in parallel
 - In addition, what nature of each variables
 - Write that information in DSL
- Then, our compiler generates an code by using predetermined optimization techniques
 - This is dependent on a problem
 - Current one is only for the particle summation

Usage Model (1)

Original source code of particle simulations

```
... initialization ...
while(t <= t_end) {</pre>
  ... predict ...
 for(i = 0; i < n; i++) {
  for(j = 0; j < n; j++) {
     f[i] += force(x[i], x[j]);
 ... update ...
 \mathbf{t} = \mathbf{t} + \mathbf{dt};
}
   finalization ...
```

Where the part to be able to compute in parallel

Usage Model (2)

User write a source in DSL such as

```
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;
dx = xj - xi;
dy = yj - yi;
dz = zj - zi;
r1i = rsqrt(dx * 2 + dy * 2 + dz * 2 + e2);
af = mj * r1i * *3;
ax += af * dx;
ay += af * dy;
az += af*dz;
```

 Our compiler generates optimized machine code for GPU / GRAPE-DR

Usage Model (3)

- And also generates APIs as library to send/receive data and control the accelerator
 - ... initialization...
 while(t <= t_end) {</pre>
 - ... predict ..
 send_data(n, x);
 execute_kernel(n);
 receive_data(n, f);
 ... update ...
 - $\mathbf{t} = \mathbf{t} + \mathbf{dt};$

}

Where a user replaces the nested loop with call to APIs and link the code with the generated library

Features

- Accelerates force summation loop
- Support two accelerators
 - R700 architecture GPU
 - GRAPE-DR
 - Developed by JM etal.
- Precision controllable
 - Single, Double, & Quadruple precision
 - QP through DD emulation techniques
 - Partially support mixed precision

Our Compiler

- Written in C++

 Prototype was developed in Ruby
- We use following software/library
 - Boost sprit for the parser
 - Low Level Virtual Machine for the optimizer
 - Google template library for the code generators

Compiler Flow

Example 1 : N-body

Simple softened gravity

$$f_i = \sum_{j=1}^N \frac{m_j(x_i - x_j)}{(|x_i - x_j|^2 + \epsilon^2)^{3/2}},$$


```
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;
dx = xj - xi;
dy = yj - yi;
dz = zj - zi;
rli = rsqrt(dx**2 + dy**2 + dz**2 + e2);
af = mj*rli**3;
ax += af*dx;
ay += af*dy;
az += af*dz;
```

Optimization on GPU

Performance of O(N²) algorithm

No.22

GFLOPS

Example 2: Feynman-loop integral

No.23

$$I = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} dz F(x, y, z),$$

$$F(x, y, z) = D(x, y, z)^{-2}$$

$$D = -xys - tz(1 - x - y - z) + (x + y)\lambda^{2}$$

$$+(1 - x - y - z)(1 - x - y)m_{e}^{2}$$

$$+z(1 - x - y)m_{f}^{2}.$$
(2)

LMEM xx, yy, cnt4; BMEM x30_1, gw30; RMEM res; CONST tt, ramda, fme, fmf, s, one;

```
zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +
        (one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;
res += gw30/d**2;
```

Performance of QP operations

Computation of Feynman-loop integral

 elapsed time in QP operations

	N = 256	N = 512	N = 1024	N = 2048	clock
GRAPE-DR	0.21	1.21	7.83	55.1	380
RV770	0.09	0.66	5.03	39.7	750
Core i7	7.39	59.0	472		2670

- CPU ~ 80 Mflops

- R700 GPU ~ 6.43 - 7.57 Gflops

– GRAPE-DR ~ 2.67 – 5.46 Gflops

Tow reasons why QP is so fast
 High compute density
 DR & R700 are register rich

Example 3: Mixed Precision

 High accuracy integration needs high accuracy in distance and summation

```
LMEM xi, yi, zi, e2;
BMEM xj, yj, zj, mj;
RMEM ax, ay, az;
dx = xj - xi;
dy = yj - yi;
dz = zj - zi;
r1i = rsqrt(dx * 2 + dy * 2 + dz * 2 + e2);
af = mj * r1i * *3;
ax += af * dx;
ay += af * dy;
az += af*dz;
```

Mix Precision Example

 Add declaration lines to specify precision of variables

IMPLICIT REAL8;

LMEM xi, yi, zi, e2; BMEM xj, yj, zj, mj; RMEM ax, ay, az; REAL16 xi, yi, zi, xj, yj, zj, ax, ay, az;

Performance of the Hermite scheme

- 4-th order integration scheme
- -6.31 GFLOPS with QP

-27.8 GFLOPS with mixed precision (4x gain)

With negligible integration error compared to QP

Comparison

- Our approach is in between two conventional approaches
 - Automatic parallel compiler
 - A user just feed an existing source code
 - But not effective in general
 - Let-users-do-everything-type compiler
 - C for CUDA, OpenCL, Brook+ etc.
 - A user have to specify every details of
 - Memory layout and its movement
 - SIMD operations
 - Threads management on GPU

Conclusion

 Many-core accelerators are effective in astronomical/astrophysical N-body simulations

- But how to program?

- We have constructed a compiler for manycore accelerators
 - That accelerate force-calculation-loop
 - Features simplicity and controllable precision
- Planed Extension
 - Support O(N log N) method on GPU