SPIM S20: A MIPS R2000 Simulator®

th
“% the performance at none of the cost”

James R. Larus
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519

Copyright (©1990-1997 by James R. Larus
(This document may be copied without royalties,
so long as this copyright notice remains on it.)

1 SPIM

SPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.!
SPIM can read and immediately execute files containing assembly language or MIPS executable
files. SPIM is a self-contained system for running these programs and contains a debugger and
interface to a few operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy to
learn and understand. The processor contains 32 general-purpose registers and a well-designed
instruction set that make it a propitious target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people have workstations
that contain a hardware, and hence significantly faster, implementation of this computer? One
reason is that these workstations are not generally available. Another reason is that these ma-
chine will not persist for many years because of the rapid progress leading to new and faster
computers. Unfortunately, the trend is to make computers faster by executing several instruc-
tions concurrently, which makes their architecture more difficult to understand and program.
The MIPS architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming than an
actual machine because they can detect more errors and provide more features than an actual
computer. For example, SPIM has a X-window interface that is better than most debuggers for
the actual machines.

*I grateful to the many students at UW who used SPIM in their courses and happily found bugs in a professor’s
code. In particular, the students in CS536, Spring 1990, painfully found the last few bugs in an “already-debugged”
simulator. I am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface.

!For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, Prentice
Hall, 1992.

Finally, simulators are an useful tool for studying computers and the programs that run on
them. Because they are implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or simply to collect data.

1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly because
of its delayed branches, delayed loads, and restricted address modes. This difficulty is tolerable
since these computers were designed to be programmed in high-level languages and so present
an interface designed for compilers, not programmers. A good part of the complexity results
from delayed instructions. A delayed branch takes two cycles to execute. In the second cycle,
the instruction immediately following the branch executes. This instruction can perform useful
work that normally would have been done before the branch or it can be a nop (no operation).
Similarly, delayed loads take two cycles so the instruction immediately following a load cannot
use the value loaded from memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine with their
assembler. This virtual computer appears to have non-delayed branches and loads and a richer
instruction set than the actual hardware. The assembler reorganizes (rearranges) instructions
to fill the delay slots. It also simulates the additional, pseudoinstructions by generating short
sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of MIPS
assembly language programmers (and compilers), who routinely take advantage of the extended
machine. Instructions marked with a dagger (}) are pseudoinstructions.

1.2 SPIM Interface

SPIM provides a simple terminal and a X-window interface. Both provide equivalent function-
ality, but the X interface is generally easier to use and more informative.

spim, the terminal version, and xspim, the X version, have the following command-line
options:

-bare
Simulate a bare MIPS machine without pseudoinstructions or the additional addressing
modes provided by the assembler. Implies -quiet.

—asm

Simulate the virtual MIPS machine provided by the assembler. This is the default.

-pseudo
Accept pseudoinstructions in assembly code.

-nopseudo
Do not accept pseudoinstructions in assembly code.

-notrap
Do not load the standard trap handler. This trap handler has two functions that must
be assumed by the user’s program. First, it handles traps. When a trap occurs, SPIM
jumps to location 0x80000080, which should contain code to service the exception. Second,

this file contains startup code that invokes the routine main. Without the trap handler,
execution begins at the instruction labeled __start.

-trap
Load the standard trap handler. This is the default.

-noquiet
Print a message when an exception occurs. This is the default.

-quiet
Do not print a message at an exception.

-nomapped_io
Disable the memory-mapped IO facility (see Section 5).

-mapped_io
Enable the memory-mapped IO facility (see Section 5). Programs that use SPIM syscalls
(see Section 1.5) to read from the terminal should not also use memory-mapped I0.

-file
Load and execute the assembly code in the file.

—-execute
Load and execute the code in the MIPS executable file a.out.

-s seg size Sets the initial size of memory segment seg to be size bytes. The memory
segments are named: text, data, stack, ktext, and kdata. For example, the pair of
arguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.

-1seg size Sets the limit on how large memory segment seg can grow to be size bytes. The
memory segments that can grow are: data, stack, and kdata.

1.2.1 Terminal Interface
The terminal interface (spim) provides the following commands:

exit
Exit the simulator.

read "file"
Read file of assembly language commands into SPIM’s memory. If the file has already
been read into SPIM, the system should be cleared (see reinitialize, below) or global
symbols will be multiply defined.

load "file"
Synonym for read.

execute "a.out"
Read the MIPS executable file a.out into SPIM’s memory.

run <addr>
Start running a program. If the optional address addr is provided, the program starts
at that address. Otherwise, the program starts at the global symbol __start, which is

defined by the default trap handler to call the routine at the global symbol main with the
usual MIPS calling convention.

step <N>
Step the program for N (default: 1) instructions. Print instructions as they execute.

continue
Continue program execution without stepping.

print $N
Print register N.

print $fN
Print floating point register N.

print addr
Print the contents of memory at address addr.

print_sym
Print the contents of the symbol table, i.e., the addresses of the global (but not local)
symbols.

reinitialize
Clear the memory and registers.

breakpoint addr
Set a breakpoint at address addr. addr can be either a memory address or symbolic label.

delete addr
Delete all breakpoints at address addr.

list
List all breakpoints.

Rest of line is an assembly instruction that is stored in memory.

<nl>
A newline reexecutes previous command.

Print a help message.

Most commands can be abbreviated to their unique prefix e.g., ex, re, 1, ru, s, p- More
dangerous commands, such as reinitialize, require a longer prefix.

1.2.2 X-Window Interface

The X version of SPIM, xspim, looks different, but should operate in the same manner as spim.
The X window has five panes (see Figure 1). The top pane displays the contents of the registers.
It is continually updated, except while a program is running.

The next pane contains the buttons that control the simulator:

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

Data and
Stack
Segments

SPIM
Messages

PC 00000000 EPC

St at us= 00000000 HI =
RO (r0) = 00000000 R8
Rl (at 00000000 R9
R2 (vO 00000000 R10
R3 (vl 00000000 R11
R4 (a0 00000000 R12
R5 (al 00000000 R13
R6 (a2 00000000 R14
R7 (a3 00000000 R15
FPO 0. 000000 FEP8
FP2 0.000000 FP10
FP4 0.000000 FEP12
FP6 = 0.000000 FP14

00000000 Cause 0000000 BadVaddr = 00000000

Single Floating Point Registers

(qui t) (| oad >

(run) (step) (clear) éet valug

(print) (br eakpt)

(hel p) Qerm’nal) (node)

00000000 LO = 0000000 H
General Registers H

t0 00000000 6 (sO0) = 0000000 R24 (t8 :
tl 00000000 R17 (s1 0000000 R25 (s9 H
t2 00000000 R18 (s2 0000000 R26 (kO H
t3 00000000 R19 (s3 0000000 R27 (k1 H
t4 00000000 R20 (s4 0000000 R28 (gp, H
t5 00000000 R21 (s5 0000000 R29 gg H
t6 00000000 R22 (s6) = 0000000 R30 (S H
t7) = 00000000 R23 (s7 0000000 R31 (ra
Do e Floatjng Point Ry st S H

= 0. 86 d Hgl eg_ g 00000 EP24 H

0 000000 FP18 0. 00000 FP26 H
0.000000 FEP20 100000 FP28 H

= 0.000000 FP22 = 0.00000 FP30 H

Text Segments :

0x00400000
0x00400004
0x00400008
0x0040000¢c

0x8f a40000
0x27a50004
0x24a60004
0x00041090

0x00400010
0x00400014
0x00400018

0x00c23021
0x0c000000
0x3402000a

Iw R4, O(R29) []
addiu R5, R29, 4 []
addiu R6, R5, 4 []
sl R2, R4, 2

addu R6 R6 R2
jal 0x00000000 []
ori RO, RO, 10 []

0x0040001c] 0x0000000c syscal |

Data Segments

0x10000000] . . . [0x10010000] 0x00000000
0x10010004] 0x74706563 0x206e6f 69
0x10010010] 0x72727563 0x61206465
0x10010020] 0x000a6465 0x495b2020
0x10010030] 0x0000205d 0x20200000
0x10010040] 0x61206465 0x65726464
0x10010050] 0x642f 7473 0x20617461
0x10010060] 0x555b2020 0x696c616e
0x10010070] 0x73736572 0x206€6920

0x636f 2000
0x6920646e
0x7265746e
0x616e555b
0x69207373
0x63746566
0x64656e67
0x726f 7473

0x726f 6e67
0x74707572
0x6e67696¢
0x6e69206e
0x00205d68
0x64646120
0x00205d65

SPI M Version 3.2 of January 14, 1990

Figure 1: X-window interface to SPIM.

quit
Exit from the simulator.

load
Read a source or executable file into memory.

run
Start the program running.

step
Single-step through a program.

clear
Reinitialize registers or memory.

set value
Set the value in a register or memory location.

print
Print the value in a register or memory location.

breakpoint
Set or delete a breakpoint or list all breakpoints.

help
Print a help message.

terminal
Raise or hide the console window.

mode
Set SPIM operating modes.

The next two panes display the memory contents. The top one shows instructions from the
user and kernel text segments.? The first few instructions in the text segment are startup code
(__start) that loads argc and argv into registers and invokes the main routine.

The lower of these two panes displays the data and stack segments. Both panes are updated
as a program executes.

The bottom pane is used to display messages from the simulator. It does not display output
from an executing program. When a program reads or writes, its IO appears in a separate
window, called the Console, which pops up when needed.

1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain things are
not identical to the actual computer. The most obvious differences are that instruction timing
and the memory systems are not identical. SPIM does not simulate caches or memory latency,
nor does it accurate reflect the delays for floating point operations or multiplies and divides.

2These instructions are real—not pseudo—MIPS instructions. SPIM translates assembler pseudoinstructions
to 1-3 MIPS instructions before storing the program in memory. Each source instruction appears as a comment
on the first instruction to which it is translated.

Another surprise (which occurs on the real machine as well) is that a pseudoinstruction
expands into several machine instructions. When single-stepping or examining memory, the
instructions that you see are slightly different from the source program. The correspondence be-
tween the two sets of instructions is fairly simple since SPIM does not reorganize the instructions
to fill delay slots.

1.4 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots (.) that do not
begin with a number. Opcodes for instructions are reserved words that are not valid identifiers.
Labels are declared by putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C conven-
tion:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2" byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align O turns off automatic alignment of .half, .word, .float,
and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.data <addr>
The following data items should be stored in the data segment. If the optional argument
addr is present, the items are stored beginning at address addr.

.double di, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is efficiently accessed via register $gp.

| Service | System Call Code | Arguments | Result |

print_int 1 $a0 = integer

print_float 2 $£12 = float

print_double 3 $£12 = double

print_string 4 $a0 = string

read.-int 5 integer (in $v0)
read float 6 float (in $£0)
read_double 7 double (in $£0)
read_string 8 $a0 = buffer, $a1 = length

sbrk 9 $a0 = amount address (in $v0)
exit 10

Table 1: System services.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

.half hi, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the optional
argument addr is present, the items are stored beginning at address addr.

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.space n
Allocate n bytes of space in the current segment (which must be the data segment in
SPIM).

.text <addr>
The next items are put in the user text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.word wi, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

1.5 System Calls

SPIM provides a small set of operating-system-like services through the system call (syscall)
instruction. To request a service, a program loads the system call code (see Table 1) into register

$v0 and the arguments into registers $a0...$a3 (or $£12 for floating point values). System calls
that return values put their result in register $v0 (or $£0 for floating point results). For example,
to print “the answer = 5”, use the commands:

.data

str: .asciiz "the answer ="
.text
1i $vO0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
1i $vO0, 1 # system call code for print_int
1i $a0, 5 # integer to print
syscall # print it

print_int is passed an integer and prints it on the console. print float prints a single
floating point number. print_double prints a double precision number. print_string is passed
a pointer to a null-terminated string, which it writes to the console.

read_int, read_float, and read_double read an entire line of input up to and including the
newline. Characters following the number are ignored. read string has the same semantics as
the Unix library routine fgets. It reads up to n — 1 characters into a buffer and terminates
the string with a null byte. If there are fewer characters on the current line, it reads through
the newline and again null-terminates the string. Warning: programs that use these syscalls
to read from the terminal should not use memory-mapped IO (see Section 5).

sbrk returns a pointer to a block of memory containing n additional bytes. exit stops a
program from running.

2 Description of the MIPS R2000

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as floating point numbers
(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the first two and entirely omits details of
the memory system. Coprocessor 1 is the floating point unit. SPIM simulates most aspects of
this unit.

2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose registers that are
numbered 0-31. Register n is designated by $n. Register $0 always contains the hardwired
value 0. MIPS has established a set of conventions as to how registers should be used. These
suggestions are guidelines, which are not enforced by the hardware. However a program that
violates them will not work properly with other software. Table 2 lists the registers and describes
their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operating
system.

Registers $a0-$a3 (4-7) are used to pass the first four arguments to routines (remaining
arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to return values

Register Name | Number |

Usage

Zero
at
v0
vl
a0
al
a2
ad
t0
tl
t2
t3
t4
175)
t6
t7
s0
sl
s2
s3
s4
)
s6
s7
t8
t9
k0
k1
gp
sp
fp
ra

0

0 IO Ui W N

Constant 0
Reserved for assembler
Expression evaluation and

results of a function
Argument 1
Argument 2
Argument 3
Argument 4
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Saved temporary (preserved across call)
Temporary (not preserved across call)
Temporary (not preserved across call)
Reserved for OS kernel
Reserved for OS kernel
Pointer to global area
Stack pointer
Frame pointer
Return address (used by function call)

Table 2: MIPS registers and the convention governing their use.

10

CPU FPU (Coprocessor 1)
Registers .
Registers
$0
$0
$31 \
|7 $31
Arithmetic Multiply
Unit Divide
Arithmetic
Unit

Coprocessor 0 (Traps and Memory)

BadVAddr Cause

Status EPC

Figure 2: MIPS R2000 CPU and FPU

from functions. Registers $t0-$t9 (8-15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers $s0-$s7 (16-23) are callee-
saved registers that hold long-lived values that should be preserved across calls.

Register $sp (29) is the stack pointer, which points to the last location in use on the stack.?
Register $£p (30) is the frame pointer.* Register $ra (31) is written with the return address for
a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of memory
in the heap that holds constants and global variables. The objects in this heap can be quickly
accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions. SPIM does
not implement all of these registers, since they are not of much use in a simulator or are part of
the memory system, which is not implemented. However, it does provide the following:

| Register Name | Number | Usage |
BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor (’s register set and are accessed by the 1wcO, mfc0, mtcO,
and swcO instructions.

%In earlier version of SPIM, $sp was documented as pointing at the first free word on the stack (not the last
word of the stack frame). Recent MIPS documents have made it clear that this was an error. Both conventions
work equally well, but we choose to follow the real system.

“The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.

11

Interrupt — Old — —Previous— —Current—
\ X \
P RN O A RN

{_\),oz T L $& &L $&o

< S <& N <

Figure 3: The Status register.

15 10 5 2
Pending Exception
Interrupts Code

Figure 4: The Cause register.

Figure 3 describes the bits in the Status register that are implemented by SPIM. The
interrupt mask contains a bit for each of the five interrupt levels. If a bit is one, interrupts at
that level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of
the Status register implement a three-level stack for the kernel/user and interrupt enable
bits. The kernel/user bit is 0 if the program was running in the kernel when the interrupt
occurred and 1 if it was in user mode. If the interrupt enable bit is 1, interrupts are allowed.
If it is 0, they are disabled. At an interrupt, these six bits are shifted left by two bits, so the
current bits become the previous bits and the previous bits become the old bits. The current
bits are both set to 0 (i.e., kernel mode with interrupts disabled).

Figure 4 describes the bits in the Cause registers. The five pending interrupt bits corre-
spond to the five interrupt levels. A bit becomes 1 when an interrupt at its level has occurred
but has not been serviced. The exception code register contains a code from the following
table describing the cause of an exception.

| Number | Name | Description |
0 INT External interrupt
4 ADDRL Address error exception (load or instruction fetch)
5 ADDRS Address error exception (store)
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL | Syscall exception
9 BKPT Breakpoint exception
10 RI Reserved instruction exception
12 OVF Arithmetic overflow exception

12

2.2 Byte Order

Processors can number the bytes within a word to make the byte with the lowest number either
the leftmost or rightmost one. The convention used by a machine is its byte order. MIPS
processors can operate with either big-endian byte order:

Byte #

(0]1[2]3]
or little-endian byte order:

Byte #
(3[2]1]0]
SPIM operates with both byte orders. SPIM’s byte order is determined by the byte order of

the underlying hardware running the simulator. On a DECstation 3100, SPIM is little-endian,
while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.

2.3 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate
(integer) c¢ and the contents of register rx as the address. The virtual machine provides the
following addressing modes for load and store instructions:

| Format | Address Computation |
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol + imm address of symbol + or — immediate
symbol + imm (register) | address of symbol + or — (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is aligned if its
memory address is a multiple of its size in bytes. Therefore, a halfword object must be stored
at even addresses and a full word object must be stored at addresses that are a multiple of 4.
However, MIPS provides some instructions for manipulating unaligned data.

2.4 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).
The immediate forms of the instructions are only included for reference. The assembler will
translate the more general form of an instruction (e.g., add) into the immediate form (e.g.,
addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value T
Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrcl, Src2 Addition (with overflow)
addi Rdest, Rsrcl, Imm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)

13

addiu Rdest, Rsrcl, Imm Addition Immediate (without overflow)
Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrcl, Imm AND Immediate
Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrcl, Rsrc2 Divide (signed)
divu Rsrcl, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. divu treats is operands as unsigned values. Leave the
quotient in register 1o and the remainder in register hi. Note that if an operand is negative,
the remainder is unspecified by the MIPS architecture and depends on the conventions of the
machine on which SPIM is run.

div Rdest, Rsrcl, Src2 Divide (signed, with overflow) !
divu Rdest, Rsrcl, Src2 Divide (unsigned, without overflow)
Put the quotient of the integers from register Rsrcl and Src2 into register Rdest. divu treats
is operands as unsigned values.

mul Rdest, Rsrcl, Src2 Multiply (without overflow) !
mulo Rdest, Rsrcl, Src2 Multiply (with overflow) T
mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow) !

Put the product of the integers from register Rsrcl and Src2 into register Rdest.

mult Rsrcl, Rsrc2 Multiply
multu Rsrcl, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow) !
negu Rdest, Rsrc Negate Value (without overflow)
Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrcil, Src2 NOR
Put the logical NOR of the integers from register Rsrcl and Src2 into register Rdest.

not Rdest, Rsrc NOT*
Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrcl, Src2 OR
ori Rdest, Rsrcl, Imm OR Immediate
Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrcl, Src2 Remainder T
remu Rdest, Rsrcl, Src2 Unsigned Remainder t
Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspecified by the MIPS architecture
and depends on the conventions of the machine on which SPIM is run.

14

rol Rdest, Rsrcl, Src2 Rotate LeﬁﬂL
ror Rdest, Rsrcl, Src2 Rotate Right t
Rotate the contents of register Rsrci left (right) by the distance indicated by Src2 and put the
result in register Rdest.

sll Rdest, Rsrcl, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrci left (right) by the distance indicated by Src2 (Rsrc2) and
put the result in register Rdest.

sub Rdest, Rsrcl, Src2 Subtract (with overflow)
subu Rdest, Rsrcl, Src2 Subtract (without overflow)
Put the difference of the integers from register Rsrcl and Src2 into register Rdest.

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcl, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

2.5 Constant-Manipulating Instructions

1i Rdest, imm Load Immediate 1
Move the immediate imm into register Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of register Rdest. The
lower bits of the register are set to 0.

2.6 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

seq Rdest, Rsrcl, Src2 Set Equal t
Set register Rdest to 1 if register Rsrcl equals Src2 and to be 0 otherwise.

sge Rdest, Rsrcl, Src2 Set Greater Than Equal T
sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned |
Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.
sgt Rdest, Rsrcl, Src2 Set Greater Than |
sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsz'gned1L
Set register Rdest to 1 if register Rsrc1l is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrcil, Src2 Set Less Than Equal
sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned '

Set register Rdest to 1 if register Rsrc1l is less than or equal to Src2 and to 0 otherwise.

15

slt Rdest, Rsrcl, Src2 Set Less Than

slti Rdest, Rsrcl, Imm Set Less Than Immediate
sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrc1i is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrcl, Src2 Set Not FEqual t
Set register Rdest to 1 if register Rsrcl is not equal to Src2 and to 0 otherwise.

2.7 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch
instructions use a signed 16-bit offset field; hence they can jump 2'5 — 1 instructions (not bytes)
forward or 2!% instructions backwards. The jump instruction contains a 26 bit address field.

b label Branch instruction |
Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true
(false).

beq Rsrcl, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

beqz Rsrc, label Branch on Equal Zero t
Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrcl, Src2, label Branch on Greater Than Equafr
bgeu Rsrcl, Src2, label Branch on GTE Unsigned '
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrcl, Src2, label Branch on Greater Than
bgtu Rsrcl, Src2, label Branch on Greater Than UnsigmadJr
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.

16

ble Rsrcl, Src2, label Branch on Less Than E’quaﬂL
bleu Rsrcl, Src2, label Branch on LTE Unsz’gnedJr
Conditionally branch to the instruction at the label if the contents of register Rsrcl are less
than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal
to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal
to 0 or less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrcl, Src2, label Branch on Less Than
bltu Rsrcl, Src2, label Branch on Less Than Unsz’gnedJr
Conditionally branch to the instruction at the label if the contents of register Rsrcl are less
than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrcl, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrcl are not
equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsrc. Save
the address of the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

2.8 Load Instructions

la Rdest, address Load Address t
Load computed address, not the contents of the location, into register Rdest.

1b Rdest, address Load Byte
1lbu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest. The byte is sign-extended by the 1b, but not the
1bu, instruction.

17

1d Rdest, address Load Double-Word 1
Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

1h Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-extended
by the 1h, but not the lhu, instruction

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0-3).

lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.
ulh Rdest, address Unaligned Load Halfword !
ulhu Rdest, address Unaligned Load Halfword Unsigned '

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. The
halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word 1
Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

2.9 Store Instructions
sb Rsrc, address Store Byte

Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double- Word
Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word
Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword
Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word
Store the word from register Rsrc at the possibly-unaligned address.

18

2.10 Data Movement Instructions

move Rdest, Rsrc Move 1
Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These
instructions move values to and from these registers. The multiply, divide, and remainder
instructions described above are pseudoinstructions that make it appear as if this unit operates
on the general registers and detect error conditions such as divide by zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi
mtlo Rdest Mowe To lo
Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, CPsrc Mowve From Coprocessor z
Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 11
Move the contents of floating point registers FRsrcl and FRsrcl + 1 to CPU registers Rdest
and Rdest + 1.

mtcz Rsrc, CPdest Mowve To Coprocessor z
Move the contents of CPU register Rsrc to coprocessor z’s register CPdest.

2.11 Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-
bit) and double precision (64-bit) floating point numbers. This coprocessor has its own registers,
which are numbered $£0-$£31. Because these registers are only 32-bits wide, two of them are
required to hold doubles. To simplify matters, floating point operations only use even-numbered
registers—including instructions that operate on single floats.

Values are moved in or out of these registers a word (32-bits) at a time by lwcl, swcl, mtel,
and mfcl instructions described above or by the 1.s, 1.d, s.s, and s.d pseudoinstructions
described below. The flag set by floating point comparison operations is read by the CPU with
its bclt and belf instructions.

In all instructions below, FRdest, FRsrcl, FRsrc2, and FRsrc are floating point registers
(e.g., $£2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register FRsrc and put it in
register FRdest.

19

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrcl and FRsrc2 and put
it in register FRdest.

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Equal Single
Compare the floating point double in register FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrcl, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Equal Single
Compare the floating point double in register FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

c.1lt.d FRsrcl, FRsrc2 Compare Less Than Double
c.1lt.s FRsrcl, FRsrc2 Compare Less Than Single
Compare the floating point double in register FRsrcl against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
Convert the double or single precision floating point number in register FRsrc to an integer and
put it in register FRdest.

div.d FRdest, FRsrcl, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

1.d FRdest, address Load Floating Point Double
1l.s FRdest, address Load Floating Point Single
Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Movwve Floating Point Double
mov.s FRdest, FRsrc Mowe Floating Point Single
Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrcl, FRsrc2 Floating Point Multiply Single

20

Compute the product of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double t
s.s FRdest, address Store Floating Point Single T

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrcl, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single
Compute the difference of the floating float doubles (singles) in registers FRsrcl and FRsrc2
and put it in register FRdest.

2.12 Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call (see Table 1) provided by SPIM.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

3 Memory Usage

The organization of memory in MIPS systems is conventional. A program’s address space is
composed of three parts (see Figure 5).

At the bottom of the user address space (0x400000) is the text segment, which holds the
instructions for a program.

Above the text segment is the data segment (starting at 0x10000000), which is divided into
two parts. The static data portion contains objects whose size and address are known to the
compiler and linker. Immediately above these objects is dynamic data. As a program allocates
space dynamically (i.e., by malloc), the sbrk system call moves the top of the data segment up.

The program stack resides at the top of the address space (Ox7fHIff). It grows down, towards
the data segment.

4 Calling Convention

The calling convention described in this section is the one used by gcc, not the native MIPS
compiler, which uses a more complex convention that is slightly faster.

21

Ox 7fffffff

Stack Segment

Data Segment

Text Segment

0x400000

Reserved

Figure 5: Layout of memory.

Figure 6 shows a diagram of a stack frame. A frame consists of the memory between the
frame pointer ($fp), which points to the word immediately after the last argument passed on
the stack, and the stack pointer ($sp), which points to the last word in the frame. As typical
of Unix systems, the stack grows down from higher memory addresses, so the frame pointer is
above stack pointer.

The following steps are necessary to effect a call:

1. Pass the arguments. By convention, the first four arguments are passed in registers $a0-
$a3 (though simpler compilers may choose to ignore this convention and pass all arguments
via the stack). The remaining arguments are pushed on the stack.

2. Save the caller-saved registers. This includes registers $t0-$t9, if they contain live values
at the call site.

3. Execute a jal instruction.
Within the called routine, the following steps are necessary:
1. Establish the stack frame by subtracting the frame size from the stack pointer.

2. Save the callee-saved registers in the frame. Register $fp is always saved. Register $ra
needs to be saved if the routine itself makes calls. Any of the registers $s0-$s7 that are
used by the callee need to be saved.

3. Establish the frame pointer by adding the stack frame size - 4 to the address in $sp.

22

$fp — argument 6

argument 5
arguments 1-4 T
) . memory
saved registers addresses

local variables

dynamic area

$sp —

Figure 6: Layout of a stack frame. The frame pointer points just below the last argument passed
on the stack. The stack pointer points to the last word in the frame.

23

Finally, to return from a call, a function places the returned value into $v0 and executes the
following steps:

1. Restore any callee-saved registers that were saved upon entry (including the frame pointer
$£p).

2. Pop the stack frame by adding the frame size to $sp.

3. Return by jumping to the address in register $ra.

5 Input and Output

In addition to simulating the basic operation of the CPU and operating system, SPIM also
simulates a memory-mapped terminal connected to the machine. When a program is “running,”
SPIM connects its own terminal (or a separate console window in xspim) to the processor. The
program can read characters that you type while the processor is running. Similarly, if SPIM
executes instructions to write characters to the terminal, the characters will appear on SPIM’s
terminal or console window. One exception to this rule is control-C: it is not passed to the
processor, but instead causes SPIM to stop simulating and return to command mode. When the
processor stops executing (for example, because you typed control-C or because the machine hit
a breakpoint), the terminal is reconnected to SPIM so you can type SPIM commands. To use
memory-mapped IO, spim or xspim must be started with the -mapped_io flag.

The terminal device consists of two independent units: a receiver and a transmitter. The
receiver unit reads characters from the keyboard as they are typed. The transmitter unit writes
characters to the terminal’s display. The two units are completely independent. This means, for
example, that characters typed at the keyboard are not automatically “echoed” on the display.
Instead, the processor must get an input character from the receiver and re-transmit it to echo
it.

The processor accesses the terminal using four memory-mapped device registers, as shown
in Figure 7. “Memory-mapped” means that each register appears as a special memory location.
The Receiver Control Register is at location 0xffff0000; only two of its bits are actually used.
Bit 0 is called “ready”: if it is one it means that a character has arrived from the keyboard but
has not yet been read from the receiver data register. The ready bit is read-only: attempts to
write it are ignored. The ready bit changes automatically from zero to one when a character
is typed at the keyboard, and it changes automatically from one to zero when the character is
read from the receiver data register.

Bit one of the Receiver Control Register is “interrupt enable”. This bit may be both read
and written by the processor. The interrupt enable is initially zero. If it is set to one by the
processor, an interrupt is requested by the terminal on level zero whenever the ready bit is one.
For the interrupt actually to be received by the processor, interrupts must be enabled in the
status register of the system coprocessor (see Section 2).

Other bits of the Receiver Control Register are unused: they always read as zeroes and are
ignored in writes.

The second terminal device register is the Receiver Data Register (at address 0xffff0004).
The low-order eight bits of this register contain the last character typed on the keyboard, and
all the other bits contain zeroes. This register is read-only and only changes value when a new
character is typed on the keyboard. Reading the Receiver Data Register causes the ready bit in
the Receiver Control Register to be reset to zero.

24

Unused 1 1

Receiver Control
(Oxffff0000)

Interrupt Ready
Enable

Unused 8
Receiver Data
(0xffff0004)

Received Byte

Unused 1 1

Transmitter Control
(Oxffff0008)

Interrupt Ready
Enable

Unused 8

Transmitter Data
(Ox{fff000c)
Transmitted Byte
Figure 7: The terminal is controlled by four device registers, each of which appears as a special

memory location at the given address. Only a few bits of the registers are actually used: the
others always read as zeroes and are ignored on writes.

25

The third terminal device register is the Transmitter Control Register (at address 0x{Fff0008).
Only the low-order two bits of this register are used, and they behave much like the corresponding
bits of the Receiver Control Register. Bit 0 is called “ready” and is read-only. If it is one it
means the transmitter is ready to accept a new character for output. If it is zero it means the
transmitter is still busy outputting the previous character given to it. Bit one is “interrupt
enable”; it is readable and writable. If it is set to one, then an interrupt will be requested on
level one whenever the ready bit is one.

The final device register is the Transmitter Data Register (at address 0xffff000c). When it is
written, the low-order eight bits are taken as an ASCII character to output to the display. When
the Transmitter Data Register is written, the ready bit in the Transmitter Control Register will
be reset to zero. The bit will stay zero until enough time has elapsed to transmit the character
to the terminal; then the ready bit will be set back to one again. The Transmitter Data Register
should only be written when the ready bit of the Transmitter Control Register is one; if the
transmitter isn’t ready then writes to the Transmitter Data Register are ignored (the write
appears to succeed but the character will not be output).

In real computers it takes time to send characters over the serial lines that connect terminals
to computers. These time lags are simulated by SPIM. For example, after the transmitter starts
transmitting a character, the transmitter’s ready bit will become zero for a while. SPIM measures
this time in instructions executed, not in real clock time. This means that the transmitter will
not become ready again until the processor has executed a certain number of instructions. If
you stop the machine and look at the ready bit using SPIM, it will not change. However, if you
let the machine run then the bit will eventually change back to one.

26

